Generalized Plumbings and Murasugi Sums
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Generalized Plumbings and Murasugi Sums
Auteur(s) :
Ozbagci, Burak [Auteur]
Koç University
Popescu-Pampu, Patrick [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Koç University
Popescu-Pampu, Patrick [Auteur]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Arnold Mathematical Journal
Pagination :
69-119
Éditeur :
Springer
Date de publication :
2016-03
ISSN :
2199-6792
Mot(s)-clé(s) en anglais :
Cobordisms
Morse functions
Murasugi sums
Open books
Plumbing
Seifert surfaces
Morse functions
Murasugi sums
Open books
Plumbing
Seifert surfaces
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
We propose a generalization of the classical notions of plumbing and Murasugi summing operations to smooth manifolds of arbitrary dimensions, so that in this general context Gabai’s credo “the Murasugi sum is a natural ...
Lire la suite >We propose a generalization of the classical notions of plumbing and Murasugi summing operations to smooth manifolds of arbitrary dimensions, so that in this general context Gabai’s credo “the Murasugi sum is a natural geometric operation” holds. In particular, we prove that the sum of the pages of two open books is again a page of an open book and that there is an associated summing operation of Morse maps. We conclude with several open questions relating this work with singularity theory and contact topology.Lire moins >
Lire la suite >We propose a generalization of the classical notions of plumbing and Murasugi summing operations to smooth manifolds of arbitrary dimensions, so that in this general context Gabai’s credo “the Murasugi sum is a natural geometric operation” holds. In particular, we prove that the sum of the pages of two open books is again a page of an open book and that there is an associated summing operation of Morse maps. We conclude with several open questions relating this work with singularity theory and contact topology.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Date de dépôt :
2025-01-24T14:34:23Z
Fichiers
- document
- Accès libre
- Accéder au document
- 1412.2229.pdf
- Accès libre
- Accéder au document
- 1412.2229
- Accès libre
- Accéder au document