• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lax–Wendroff Schemes with Polynomial ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
DOI :
10.1007/s42286-022-00060-w
Title :
Lax–Wendroff Schemes with Polynomial Extrapolation and Simplified Lax–Wendroff Schemes for Dispersive Waves: A Comparative Study
Author(s) :
Cauquis, Aurore [Auteur]
Commissariat à l'énergie atomique et aux énergies alternatives [CEA]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Ricchiuto, Mario [Auteur]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Heinrich, Philippe [Auteur] refId
MOdel for Data Analysis and Learning [MODAL]
Commissariat à l'énergie atomique et aux énergies alternatives [CEA]
Journal title :
Water Waves
Publisher :
Springer
Publication date :
2022
ISSN :
2523-367X
HAL domain(s) :
Informatique [cs]/Modélisation et simulation
English abstract : [en]
One of the features of Boussinesq-type models for dispersive wave propagation is the presence of mixed spatial/temporal derivatives in the partial differential system. This is a critical point in the design of the time ...
Show more >
One of the features of Boussinesq-type models for dispersive wave propagation is the presence of mixed spatial/temporal derivatives in the partial differential system. This is a critical point in the design of the time marching strategy, as the cost of inverting the algebraic equations arising from the discretization of these mixed terms may result in a nonnegligible overhead. In this paper, we propose novel approaches based on the classical Lax–Wendroff (LW) strategy to achieve single-step high-order schemes in time. To reduce the cost of evaluating the complex correction terms arising in the Lax–Wendroff procedure for Boussinesq equations, we propose several simplified strategies which allow to reduce the computational time at fixed accuracy. To evaluate these qualities, we perform a spectral analysis to assess the dispersion and damping error. We then evaluate the schemes on several benchmarks involving dispersive propagation over flat and nonflat bathymetries, and perform numerical grid convergence studies on two of them. Our results show a potential for a CPU reduction between 35 and 40% to obtain accuracy levels comparable to those of the classical RK3 method.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
Source :
Harvested from HAL
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • WAWA-CRH22.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017