• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stability of finite difference schemes for ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
Title :
Stability of finite difference schemes for hyperbolic initial boundary value problems
Author(s) :
Coulombel, Jean-François [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Journal title :
SIAM Journal on Numerical Analysis
Pages :
2844-2871
Publisher :
Society for Industrial and Applied Mathematics
Publication date :
2009-12-31
ISSN :
0036-1429
English keyword(s) :
finite difference schemes
stability
symmetrizers
Hyperbolic systems
boundary conditions
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Analyse numérique [math.NA]
English abstract : [en]
We study the stability of finite difference schemes for hyperbolic initial boundary value problems in one space dimension. Assuming stability for the dicretization of the hyperbolic operator as well as a geometric regularity ...
Show more >
We study the stability of finite difference schemes for hyperbolic initial boundary value problems in one space dimension. Assuming stability for the dicretization of the hyperbolic operator as well as a geometric regularity condition, we show that an appropriate determinant condition, that is the analogue of the uniform Kreiss-Lopatinskii condition for the continuous problem, yields strong stability for the discretized initial boundary value problem. The analysis relies on a suitable discrete block structure condition and the construction of suitable symmetrizers. Our work extends the results of Gustafsson, Kreiss, Sundstrom to a wider class of finite difference schemes.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
Source :
Harvested from HAL
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • IBVP_num_version2.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017