• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison principles and applications to ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Pré-publication ou Document de travail
Title :
Comparison principles and applications to mathematical modelling of vegetal meta-communities
Author(s) :
Delvoye, Gauthier [Auteur]
Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 UPJV [LAMFA]
Goubet, Olivier [Auteur] refId
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Centre National de la Recherche Scientifique [CNRS]
Université de Lille
Systèmes de particules et systèmes dynamiques [Paradyse]
Centre Inria de l'Université de Lille
Paccaut, Frédéric [Auteur]
Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 UPJV [LAMFA]
HAL domain(s) :
Mathématiques [math]/Probabilités [math.PR]
English abstract : [en]
This article partakes of the PEGASE project the goal of which is a better understanding of the mechanisms explaining the behaviour of species living in a network of forest patches linked by ecological corridors (hedges for ...
Show more >
This article partakes of the PEGASE project the goal of which is a better understanding of the mechanisms explaining the behaviour of species living in a network of forest patches linked by ecological corridors (hedges for instance). Actually we plan to study the effect of the fragmentation of the habitat on biodiversity. A simple neutral model for the evolution of abundances in a vegetal metacommunity is introduced. Migration between the communities is explicitely modelized in a deterministic way, while the reproduction process is dealt with using Wright-Fisher models, independently within each community. The large population limit of the model is considered. The hydrodynamic limit of this split-step method is proved to be the solution of a partial differential equation with a deterministic part coming from the migration process and a diffusion part due to the Wright-Fisher process. Finally, the diversity of the metacommunity is adressed through one of its indicator, the mean extinction time of a species. At the limit, using classical comparison principles, the exchange process between the communities is proved to slow down extinction. This shows that the existence of corridors seems to be good for the biodiversity.Show less >
Language :
Anglais
Comment :
Accepted for publication in Mathematics in Engineering
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
Source :
Harvested from HAL
Files
Thumbnail
  • 2004.01417
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017