• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A local optimal diastolic inequality on ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
Link :
https://lilloa.univ-lille.fr/handle/20.500.12210/122574
Title :
A local optimal diastolic inequality on the two-sphere
Author(s) :
Balacheff, Florent [Auteur] refId
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Journal of Topology and Analysis
Pages :
109-121
Publisher :
World Scientific
Publication date :
2010
ISSN :
1793-5253
English keyword(s) :
Conical singularity
diastole
sphere
systole
HAL domain(s) :
Mathématiques [math]/Géométrie différentielle [math.DG]
English abstract : [en]
Using a ramified cover of the two-sphere by the torus, we prove a local optimal inequality between the diastole and the area on the two-sphere near a singular metric. This singular metric, made of two equilateral triangles ...
Show more >
Using a ramified cover of the two-sphere by the torus, we prove a local optimal inequality between the diastole and the area on the two-sphere near a singular metric. This singular metric, made of two equilateral triangles glued along their boundary , has been conjectured by E. Calabi to achieve the best ratio area over the square of the length of a shortest closed geodesic. Our diastolic inequality asserts that this conjecture is to some extent locally true.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
Source :
Harvested from HAL
Submission date :
2025-01-24T16:16:20Z
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • Singular.pdf
  • Open access
  • Access the document
Thumbnail
  • 0811.0330
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017