• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ON A TROPICAL VERSION OF THE JACOBIAN CONJECTURE
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Link :
https://lilloa.univ-lille.fr/handle/20.500.12210/122737
Title :
ON A TROPICAL VERSION OF THE JACOBIAN CONJECTURE
Author(s) :
Grigoriev, Dima [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Radchenko, Danylo [Auteur]
Max Planck Institute for Mathematics [MPIM]
Conference title :
MEGA 2019 - International Conference on Effective Methods in Algebraic Geometry
City :
Madrid
Country :
Espagne
Start date of the conference :
2019-06-17
Publication date :
2019
HAL domain(s) :
Informatique [cs]
Informatique [cs]/Géométrie algorithmique [cs.CG]
English abstract : [en]
We prove that, for a tropical rational map if for any point theconvex hull of Jacobian matrices at smooth points in a neighborhood of thepoint does not contain singular matrices then the map is an isomorphism. Wealso show ...
Show more >
We prove that, for a tropical rational map if for any point theconvex hull of Jacobian matrices at smooth points in a neighborhood of thepoint does not contain singular matrices then the map is an isomorphism. Wealso show that a tropical polynomial map on the plane is an isomorphism ifall the Jacobians have the same sign (positive or negative). In addition, for atropical rational map we prove that if the Jacobians have the same sign andif its preimage is a singleton at least at one regular point then the map is anisomorphism.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
Source :
Harvested from HAL
Submission date :
2025-01-24T16:39:12Z
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • 12.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017