• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Non-convex functionals penalizing simultaneous ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
DOI :
10.2422/2036-2145.201906_006
Title :
Non-convex functionals penalizing simultaneous oscillations along independent directions: rigidity estimates
Author(s) :
Goldman, Michael [Auteur]
Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
Merlet, Benoît [Auteur] refId
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Journal title :
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze
Pages :
1473--1509
Publisher :
Scuola Normale Superiore
Publication date :
2021
ISSN :
0391-173X
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
English abstract : [en]
We study a family of non-convex functionals {E} on the space of measurable functions u : Ω 1 × Ω 2 ⊂ R n 1 × R n 2 → R. These functionals vanish on the non-convex subset S(Ω 1 × Ω 2) formed by functions of the form u(x 1 ...
Show more >
We study a family of non-convex functionals {E} on the space of measurable functions u : Ω 1 × Ω 2 ⊂ R n 1 × R n 2 → R. These functionals vanish on the non-convex subset S(Ω 1 × Ω 2) formed by functions of the form u(x 1 , x 2) = u 1 (x 1) or u(x 1 , x 2) = u 2 (x 2). We investigate under which conditions the converse implication "E(u) = 0 ⇒ u ∈ S(Ω 1 × Ω 2)" holds. In particular, we show that the answer depends strongly on the smoothness of u. We also obtain quantitative versions of this implication by proving that (at least for some parameters) E(u) controls in a strong sense the distance of u to S(Ω 1 × Ω 2).Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Optimisation de forme
Centre Européen pour les Mathématiques, la Physique et leurs Interactions
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
Source :
Harvested from HAL
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • CharacterizationOf1dFunctions_Part1_final.pdf
  • Open access
  • Access the document
Thumbnail
  • 1905.07905
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017