• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evolutionary clustering for categorical ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
DOI :
10.1016/j.ecosta.2017.03.004
Title :
Evolutionary clustering for categorical data using parametric links among multinomial mixture models
Author(s) :
Hasnat, Md Abul [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Velcin, Julien [Auteur]
Entrepôts, Représentation et Ingénierie des Connaissances [ERIC]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Bonnevay, Stephane [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Jacques, Julien [Auteur]
Entrepôts, Représentation et Ingénierie des Connaissances [ERIC]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
MOdel for Data Analysis and Learning [MODAL]
Journal title :
Econometrics and Statistics
Pages :
141-159
Publisher :
Elsevier
Publication date :
2017-07
ISSN :
2452-3062
English keyword(s) :
model-based clustering
mixture model
multinomial distribution
evolutionary clustering
Twitter data
HAL domain(s) :
Mathématiques [math]/Statistiques [math.ST]
Informatique [cs]/Web
Informatique [cs]/Traitement du texte et du document
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Recherche d'information [cs.IR]
English abstract : [en]
In this paper, we propose a novel evolutionary clustering method for temporal categorical data based on parametric links among multinomial mixture models. Besides clustering, our main goal is to interpret the evolutions ...
Show more >
In this paper, we propose a novel evolutionary clustering method for temporal categorical data based on parametric links among multinomial mixture models. Besides clustering, our main goal is to interpret the evolutions of clusters over time. To this aim, first we propose the formulation of a generalized model that establishes parametric links among two multinomial mixture. Afterward, different parametric sub-models are defined in order to model typical evolutions of the clustering structure. Model selection criteria allow to select the best sub-models and thus to guess the clustering evolution.For the experiments, first we evaluate the proposed method with synthetic temporal data. Next, we apply it to analyze the annotated social media data. Results show that the proposed method is better than the state-of-the-art based on the common evaluation metrics. Additionally, it can provide interpretation about the temporal evolution of the clusters.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Images sur le Web : analyse de la dynamique des images sur le Web 2.0.
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
Source :
Harvested from HAL
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • PLMM.pdf
  • Open access
  • Access the document
Thumbnail
  • PLMM.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017