Large complex correlated Wishart matrices: ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Large complex correlated Wishart matrices: the Pearcey kernel and expansion at the hard edge
Auteur(s) :
Hachem, Walid [Auteur]
Laboratoire Traitement et Communication de l'Information [LTCI]
Hardy, Adrien [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Najim, Jamal [Auteur]
Laboratoire d'Informatique Gaspard-Monge [LIGM]
Laboratoire Traitement et Communication de l'Information [LTCI]
Hardy, Adrien [Auteur]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Najim, Jamal [Auteur]
Laboratoire d'Informatique Gaspard-Monge [LIGM]
Titre de la revue :
Electronic Journal of Probability
https://projecteuclid.org/journals/electronic-journal-of-probability/volume-21/issue-none/Large-complex-correlated-Wishart-matrices--the-Pearcey-kernel-and/10.1214/15-EJP4441.full
https://projecteuclid.org/journals/electronic-journal-of-probability/volume-21/issue-none/Large-complex-correlated-Wishart-matrices--the-Pearcey-kernel-and/10.1214/15-EJP4441.full
Pagination :
1-36
Éditeur :
Institute of Mathematical Statistics (IMS)
Date de publication :
2016
ISSN :
1083-6489
Discipline(s) HAL :
Mathématiques [math]/Probabilités [math.PR]
Résumé en anglais : [en]
We study the eigenvalue behaviour of large complex correlated Wishart matrices near an interior point of the limiting spectrum where the density vanishes (cusp point), and refine the existing results at the hard edge as ...
Lire la suite >We study the eigenvalue behaviour of large complex correlated Wishart matrices near an interior point of the limiting spectrum where the density vanishes (cusp point), and refine the existing results at the hard edge as well. More precisely, under mild assumptions for the population covariance matrix, we show that the limiting density vanishes at generic cusp points like a cube root, and that the local eigenvalue behaviour is described by means of the Pearcey kernel if an extra decay assumption is satisfied. As for the hard edge, we show that the density blows up like an inverse square root at the origin. Moreover, we provide an explicit formula for the 1/N correction term for the fluctuation of the smallest random eigenvalue.Lire moins >
Lire la suite >We study the eigenvalue behaviour of large complex correlated Wishart matrices near an interior point of the limiting spectrum where the density vanishes (cusp point), and refine the existing results at the hard edge as well. More precisely, under mild assumptions for the population covariance matrix, we show that the limiting density vanishes at generic cusp points like a cube root, and that the local eigenvalue behaviour is described by means of the Pearcey kernel if an extra decay assumption is satisfied. As for the hard edge, we show that the density blows up like an inverse square root at the origin. Moreover, we provide an explicit formula for the 1/N correction term for the fluctuation of the smallest random eigenvalue.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Date de dépôt :
2025-01-24T17:30:58Z
Fichiers
- 1507.06013
- Accès libre
- Accéder au document