• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Some examples of composition operators and ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Pré-publication ou Document de travail
Link :
https://lilloa.univ-lille.fr/handle/20.500.12210/123129
Title :
Some examples of composition operators and their approximation numbers on the Hardy space of the bi-disk
Author(s) :
Li, Daniel [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Queffélec, Hervé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Rodríguez-Piazza, Luis [Auteur]
English keyword(s) :
Key-words: approximation numbers
Bergman space
bidisk
Composition operator
Green capacity
Hardy space
Monge-Ampère capacity
weighted composition operator
composition oper- ator
weighted compo- sition operator
HAL domain(s) :
Mathématiques [math]/Analyse fonctionnelle [math.FA]
English abstract : [en]
We give examples of composition operators $C_\Phi$ on $H^2 (\D^2)$ showing that the condition $\|\Phi \|_\infty = 1$ is not sufficient for their approximation numbers $a_n (C_\Phi)$ to satisfy $\lim_{n \to \infty} [a_n ...
Show more >
We give examples of composition operators $C_\Phi$ on $H^2 (\D^2)$ showing that the condition $\|\Phi \|_\infty = 1$ is not sufficient for their approximation numbers $a_n (C_\Phi)$ to satisfy $\lim_{n \to \infty} [a_n (C_\Phi) ]^{1/\sqrt{n}} = 1$, contrary to the $1$-dimensional case. We also give a situation where this implication holds. We make a link with the Monge-Amp\`ere capacity of the image of $\Phi$.Show less >
Language :
Anglais
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
Source :
Harvested from HAL
Submission date :
2025-01-24T17:34:29Z
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • Examples-bidisk_revised.pdf
  • Open access
  • Access the document
Thumbnail
  • 1706.03570
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017