Schwarz waveform relaxation method for one ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Schwarz waveform relaxation method for one dimensional Schrödinger equation with general potential
Auteur(s) :
Besse, Christophe [Auteur]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Xing, Feng [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Maison de la Simulation [MDLS]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Xing, Feng [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Maison de la Simulation [MDLS]
Titre de la revue :
Numerical Algorithms
Pagination :
393-426
Éditeur :
Springer Verlag
Date de publication :
2017-02
ISSN :
1017-1398
Mot(s)-clé(s) en anglais :
Absorbing boundary conditions
Schwarz Waveform Relaxation method
Schrödinger equation
Parallel algorithms
Schwarz Waveform Relaxation method
Schrödinger equation
Parallel algorithms
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Analyse numérique [math.NA]
Résumé en anglais : [en]
In this paper, we apply the Schwarz Waveform Relaxation (SWR) method to the one dimensional Schrödinger equation with a general linear or a nonlinear potential. We propose a new algorithm for the Schrödinger equation with ...
Lire la suite >In this paper, we apply the Schwarz Waveform Relaxation (SWR) method to the one dimensional Schrödinger equation with a general linear or a nonlinear potential. We propose a new algorithm for the Schrödinger equation with time independent linear potential, which is robust and scalable up to 500 subdo-mains. It reduces significantly computation time compared with the classical algorithms. Concerning the case of time dependent linear potential or the non-linear potential, we use a preprocessed linear operator for the zero potential case as preconditioner which lead to a preconditioned algorithm. This ensures high scalability. Besides, some newly constructed absorbing boundary conditions are used as the transmission condition and compared numerically.Lire moins >
Lire la suite >In this paper, we apply the Schwarz Waveform Relaxation (SWR) method to the one dimensional Schrödinger equation with a general linear or a nonlinear potential. We propose a new algorithm for the Schrödinger equation with time independent linear potential, which is robust and scalable up to 500 subdo-mains. It reduces significantly computation time compared with the classical algorithms. Concerning the case of time dependent linear potential or the non-linear potential, we use a preprocessed linear operator for the zero potential case as preconditioner which lead to a preconditioned algorithm. This ensures high scalability. Besides, some newly constructed absorbing boundary conditions are used as the transmission condition and compared numerically.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Version1_Xing_Besse.pdf
- Accès libre
- Accéder au document
- 1503.02564
- Accès libre
- Accéder au document