Plasmonic enhanced photocatalytic activity ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Plasmonic enhanced photocatalytic activity of semiconductors for the degradation of organic pollutants under visible light
Auteur(s) :
Chehadi, Zeinab [Auteur]
Alkees, Nadeen [Auteur]
Bruyant, Aurélien [Auteur]
Toufaily, Joumana [Auteur]
Girardon, Jean-Sébastien [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Capron, Mickael [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Dumeignil, Franck [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Hamieh, Tayssir [Auteur]
Bachelot, Renaud [Auteur]
Jradi, Safi [Auteur]
Alkees, Nadeen [Auteur]
Bruyant, Aurélien [Auteur]
Toufaily, Joumana [Auteur]
Girardon, Jean-Sébastien [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Capron, Mickael [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Dumeignil, Franck [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Hamieh, Tayssir [Auteur]
Bachelot, Renaud [Auteur]
Jradi, Safi [Auteur]
Titre de la revue :
Materials Science in Semiconductor Processing
Numéro :
42
Pagination :
81-84
Date de publication :
2016
Discipline(s) HAL :
Chimie/Catalyse
Résumé en anglais : [en]
Metal oxide semiconductors hold great promise for applications in energy conversion and storage, environmental remediation, and other areas. However, critical factors such as the high rate of charge–carrier recombination ...
Lire la suite >Metal oxide semiconductors hold great promise for applications in energy conversion and storage, environmental remediation, and other areas. However, critical factors such as the high rate of charge–carrier recombination and limited light absorption have restricted more practical and viable applications. In this context, plasmonic nanostructures of noble metals in combination with semiconductors offer a promising future for the next generation of energy needs. In this work we investigate the coupling between Plasmonic gold nanostructures and catalyst supports such as TiO2, ZnO and Al2O3 in order to study the photocatalytic degradation of Bisphenol A (BPA) under visible irradiation (laser source and LED). The experimental investigations have shown extremely fast and complete photodegradation of organic pollutants in water. The influence of laser power and photocatalyst band gap on the catalytic activity was investigated as well. Au/TiO2 catalyst showed the fastest degradation of BPA due to efficient electron transfer from excited noble metal gold nanoparticles to the semiconductor.Lire moins >
Lire la suite >Metal oxide semiconductors hold great promise for applications in energy conversion and storage, environmental remediation, and other areas. However, critical factors such as the high rate of charge–carrier recombination and limited light absorption have restricted more practical and viable applications. In this context, plasmonic nanostructures of noble metals in combination with semiconductors offer a promising future for the next generation of energy needs. In this work we investigate the coupling between Plasmonic gold nanostructures and catalyst supports such as TiO2, ZnO and Al2O3 in order to study the photocatalytic degradation of Bisphenol A (BPA) under visible irradiation (laser source and LED). The experimental investigations have shown extremely fast and complete photodegradation of organic pollutants in water. The influence of laser power and photocatalyst band gap on the catalytic activity was investigated as well. Au/TiO2 catalyst showed the fastest degradation of BPA due to efficient electron transfer from excited noble metal gold nanoparticles to the semiconductor.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
ENSCL
CNRS
Centrale Lille
Univ. Artois
Université de Lille
CNRS
Centrale Lille
Univ. Artois
Université de Lille
Collections :
Équipe(s) de recherche :
Matériaux pour la catalyse (MATCAT)
Valorisation des alcanes et de la biomasse (VAALBIO)
Valorisation des alcanes et de la biomasse (VAALBIO)
Date de dépôt :
2019-09-24T14:34:58Z
2020-09-15T08:26:05Z
2020-09-15T08:26:05Z
Fichiers
- Plasmon_1.pdf
- Version éditeur
- Accès restreint
- Accéder au document