A new model for precipitation kinetics ...
Type de document :
Article dans une revue scientifique
URL permanente :
Titre :
A new model for precipitation kinetics considering diffusion within the precipitates
Auteur(s) :
Sheng, Ze [Auteur]
KTH Royal Institute of Technology [Stockholm] [KTH]
Bonvalet Rolland, Manon [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Hedström, Peter [Auteur]
KTH Royal Institute of Technology [Stockholm] [KTH]
KTH Royal Institute of Technology [Stockholm] [KTH]
Bonvalet Rolland, Manon [Auteur]

Unité Matériaux et Transformations (UMET) - UMR 8207
Hedström, Peter [Auteur]
KTH Royal Institute of Technology [Stockholm] [KTH]
Titre de la revue :
Calphad
Nom court de la revue :
Calphad
Numéro :
87
Pagination :
102764
Éditeur :
Elsevier BV
Date de publication :
2024-12
ISSN :
0364-5916
Mot(s)-clé(s) en anglais :
Precipitation modelling
Cu precipitation
Langer-schwartz-kampmann-wagner (LSKW) approach
Diffusion inside precipitates
Precipitates concentration profile
Cu precipitation
Langer-schwartz-kampmann-wagner (LSKW) approach
Diffusion inside precipitates
Precipitates concentration profile
Discipline(s) HAL :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Résumé en anglais : [en]
Quantitative modelling of precipitation kinetics can play an important role in a computational materials design framework. For many material systems, e.g., the Fe-Cu system, the precipitates (rich in Cu at equilibrium) ...
Lire la suite >Quantitative modelling of precipitation kinetics can play an important role in a computational materials design framework. For many material systems, e.g., the Fe-Cu system, the precipitates (rich in Cu at equilibrium) nucleate at a composition far away from the equilibrium. This in turn affects the precipitation kinetics, and the capability to model the compositional evolution of the Cu precipitates is therefore important. In the present work we propose a new approach implemented in a Langer-Schwartz-Kampmann-Wagner precipitation modelling framework where the concentration profile inside the precipitates is defined with an explicit function and the diffusive fluxes in both precipitates and matrix are solved concurrently to compute the growth rate of the precipitates. The new model is evaluated with respect to results from atom probe tomography for Cu precipitation in a 15–5 PH stainless steel. A parameter study of the effect of diffusion coefficients and interfacial energies is conducted, and it is concluded that the new model is capable of describing the experimentally determined evolution of the Cu precipitate volume fraction, mean radius, number density and composition.Lire moins >
Lire la suite >Quantitative modelling of precipitation kinetics can play an important role in a computational materials design framework. For many material systems, e.g., the Fe-Cu system, the precipitates (rich in Cu at equilibrium) nucleate at a composition far away from the equilibrium. This in turn affects the precipitation kinetics, and the capability to model the compositional evolution of the Cu precipitates is therefore important. In the present work we propose a new approach implemented in a Langer-Schwartz-Kampmann-Wagner precipitation modelling framework where the concentration profile inside the precipitates is defined with an explicit function and the diffusive fluxes in both precipitates and matrix are solved concurrently to compute the growth rate of the precipitates. The new model is evaluated with respect to results from atom probe tomography for Cu precipitation in a 15–5 PH stainless steel. A parameter study of the effect of diffusion coefficients and interfacial energies is conducted, and it is concluded that the new model is capable of describing the experimentally determined evolution of the Cu precipitate volume fraction, mean radius, number density and composition.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Équipe(s) de recherche :
Métallurgie Physique et Génie des Matériaux
Date de dépôt :
2025-03-14T08:13:31Z
2025-03-14T09:48:55Z
2025-03-14T09:48:55Z