Hydroquinone-Based Biarylic Polyphenols ...
Document type :
Article dans une revue scientifique
DOI :
Permalink :
Title :
Hydroquinone-Based Biarylic Polyphenols as Redox Organocatalysts for Dioxygen Reduction: Dramatic Effect of Orcinol Substituent on the Catalytic Activity
Author(s) :
Lebeuf, Raphael [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Nardello-Rataj, Véronique [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Aubry, Jean-Marie [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Nardello-Rataj, Véronique [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Aubry, Jean-Marie [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Journal title :
Advanced Synthesis & Catalysis
Volume number :
359
Pages :
268-278
Publication date :
2017-01-16
HAL domain(s) :
Chimie/Chimie organique
English abstract : [en]
A series of 18 new biaryls has been synthesized and investigated with regard to their organocatalytic efficiency. They consist of a hydroquinone core linked to a phenol or a resorcinol moiety. It is shown that the resorcinol ...
Show more >A series of 18 new biaryls has been synthesized and investigated with regard to their organocatalytic efficiency. They consist of a hydroquinone core linked to a phenol or a resorcinol moiety. It is shown that the resorcinol moiety substituted on its meta position has a strong impact on the catalytic activities of these compounds towards the reduction of dioxygen by diethylhydroxylamine (DEHA) in aqueous medium. While the derivative consisting of the two cores spaced by three methylene units is completely inactive, substitution on the hydroquinone part leads to tremendously active catalysts, especially the biaryl consisting of methoxyhydroquinone-orcinol. Two mechanisms are proposed to explain the dramatic efficiency of the novel hydroquinone-based biarylic polyphenols for the catalytic reduction of dioxygen, both considering the influence of the orcinol moiety on the semiquinone anion intermediate. As a first hypothesis, this substituent could promote its direct reduction by DEHA to regenerate the hydroquinone, which will react again to regenerate the semiquinone. On the other hand, an intramolecular hydrogen bond could enhance the reactivity of the semiquinone anion toward dioxygen by an addition–elimination mechanism. In this case, the elimination would provide the corresponding quinone but, since the reduction of the quinones by DEHA is much slower than the observed kinetics, a reduction by DEHA prior to the elimination has to be considered to generate the semiquinone anion instead of the quinone.Show less >
Show more >A series of 18 new biaryls has been synthesized and investigated with regard to their organocatalytic efficiency. They consist of a hydroquinone core linked to a phenol or a resorcinol moiety. It is shown that the resorcinol moiety substituted on its meta position has a strong impact on the catalytic activities of these compounds towards the reduction of dioxygen by diethylhydroxylamine (DEHA) in aqueous medium. While the derivative consisting of the two cores spaced by three methylene units is completely inactive, substitution on the hydroquinone part leads to tremendously active catalysts, especially the biaryl consisting of methoxyhydroquinone-orcinol. Two mechanisms are proposed to explain the dramatic efficiency of the novel hydroquinone-based biarylic polyphenols for the catalytic reduction of dioxygen, both considering the influence of the orcinol moiety on the semiquinone anion intermediate. As a first hypothesis, this substituent could promote its direct reduction by DEHA to regenerate the hydroquinone, which will react again to regenerate the semiquinone. On the other hand, an intramolecular hydrogen bond could enhance the reactivity of the semiquinone anion toward dioxygen by an addition–elimination mechanism. In this case, the elimination would provide the corresponding quinone but, since the reduction of the quinones by DEHA is much slower than the observed kinetics, a reduction by DEHA prior to the elimination has to be considered to generate the semiquinone anion instead of the quinone.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
ENSCL
CNRS
Centrale Lille
Univ. Artois
Université de Lille
CNRS
Centrale Lille
Univ. Artois
Université de Lille
Collections :
Research team(s) :
Colloïdes catalyse oxydation (CÏSCO)
Submission date :
2019-09-25T14:06:27Z