Nanoscale Investigations of α- and γ-Crystal ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Nanoscale Investigations of α- and γ-Crystal Phases in PVDF-Based Nanocomposites
Auteur(s) :
Barrau, Sophie [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Unité Matériaux et Transformations - UMR 8207 [UMET]
Ferri, Anthony [Auteur]
UCCS Équipe Couches Minces & Nanomatériaux
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Da Costa, Antonio [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Defebvin, Juliette [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Leroy, Sebastien [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Desfeux, Rachel [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
UCCS Équipe Couches Minces & Nanomatériaux
Lefebvre, Jean-Marc [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Unité Matériaux et Transformations - UMR 8207 [UMET]
Ferri, Anthony [Auteur]
UCCS Équipe Couches Minces & Nanomatériaux
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Da Costa, Antonio [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Defebvin, Juliette [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Leroy, Sebastien [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Desfeux, Rachel [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
UCCS Équipe Couches Minces & Nanomatériaux
Lefebvre, Jean-Marc [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Titre de la revue :
ACS Applied Materials & Interfaces
Numéro :
10
Pagination :
13092-13099
Date de publication :
2018
Mot(s)-clé(s) en anglais :
PVDF
γ-phase
atomic force microscopy
carbon nanotubes
piezoelectric
γ-phase
atomic force microscopy
carbon nanotubes
piezoelectric
Discipline(s) HAL :
Chimie/Chimie inorganique
Résumé en anglais : [en]
The impact of carbon nanotube (CNT) incorporation into semicrystalline poly(vinylidene fluoride), PVDF, was investigated at both the macro and nanoscales. A special effort was devoted to probe the local morphology and the ...
Lire la suite >The impact of carbon nanotube (CNT) incorporation into semicrystalline poly(vinylidene fluoride), PVDF, was investigated at both the macro and nanoscales. A special effort was devoted to probe the local morphology and the mechanical, ferroelectric, piezoelectric, and electrical conductivity response by means of atomic force microscopy. Incorporation of CNTs mainly induces the development of the polar γ-phase, and as a consequence, the coexistence of the γ-phase with the most stable nonpolar α-phase is observed. A maximum γ-phase content is reached at 0.7 wt % CNT loading. The spherulitic morphology of the PVDF α-phase is assessed, in conjunction with the lack of any ferroelectric response, while the presence of the polar γ-phase is confirmed, owing to clear piezoresponse signals. Local piezoelectric measurements on γ-phase domains yield a maximum effective coefficient |d33| ≈ 13 pm/V, thus underlining the potential for applications of such functional PVDF-based nanocomposites in advanced piezoelectric devices. An increase in macroscopic conductivity with CNT content is observed, with a percolation threshold achieved for a composition close to 0.7 wt %. Nanoscale investigation of the electrical conductivity confirms the presence of some infinite CNT cluster homogeneously distributed over the surface. The macroscopic viscoelastic behavior of the composite reflects the reinforcing effect of CNTs, while the nanomechanical characterization yields a local contact modulus of the γ-phase domains larger than that of its α-phase counterpart, in agreement with the fact that the CNTs act as γ-phase promoters and subsequently reinforce the γ-domains.Lire moins >
Lire la suite >The impact of carbon nanotube (CNT) incorporation into semicrystalline poly(vinylidene fluoride), PVDF, was investigated at both the macro and nanoscales. A special effort was devoted to probe the local morphology and the mechanical, ferroelectric, piezoelectric, and electrical conductivity response by means of atomic force microscopy. Incorporation of CNTs mainly induces the development of the polar γ-phase, and as a consequence, the coexistence of the γ-phase with the most stable nonpolar α-phase is observed. A maximum γ-phase content is reached at 0.7 wt % CNT loading. The spherulitic morphology of the PVDF α-phase is assessed, in conjunction with the lack of any ferroelectric response, while the presence of the polar γ-phase is confirmed, owing to clear piezoresponse signals. Local piezoelectric measurements on γ-phase domains yield a maximum effective coefficient |d33| ≈ 13 pm/V, thus underlining the potential for applications of such functional PVDF-based nanocomposites in advanced piezoelectric devices. An increase in macroscopic conductivity with CNT content is observed, with a percolation threshold achieved for a composition close to 0.7 wt %. Nanoscale investigation of the electrical conductivity confirms the presence of some infinite CNT cluster homogeneously distributed over the surface. The macroscopic viscoelastic behavior of the composite reflects the reinforcing effect of CNTs, while the nanomechanical characterization yields a local contact modulus of the γ-phase domains larger than that of its α-phase counterpart, in agreement with the fact that the CNTs act as γ-phase promoters and subsequently reinforce the γ-domains.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Établissement(s) :
ENSCL
Université de Lille
CNRS
INRA
Centrale Lille
Univ. Artois
Université de Lille
CNRS
INRA
Centrale Lille
Univ. Artois
Collections :
Équipe(s) de recherche :
Couches minces & nanomatériaux (CMNM)
Ingénierie des Systèmes Polymères
Ingénierie des Systèmes Polymères
Date de dépôt :
2019-09-25T14:37:54Z
2020-09-22T11:50:35Z
2021-06-15T07:45:50Z
2021-10-19T11:20:34Z
2020-09-22T11:50:35Z
2021-06-15T07:45:50Z
2021-10-19T11:20:34Z