Ultrasound-assisted heterogeneous Fenton-like ...
Type de document :
Article dans une revue scientifique
URL permanente :
Titre :
Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst
Auteur(s) :
Hou, Liwei [Auteur]
Wang, Liguo [Auteur]
Royer, sebastien [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Zhang, Hui [Auteur]
Wang, Liguo [Auteur]
Royer, sebastien [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Zhang, Hui [Auteur]
Titre de la revue :
Journal of Hazardous Materials
Numéro :
302
Pagination :
458-467
Date de publication :
2016-01-25
Discipline(s) HAL :
Chimie/Catalyse
Résumé en anglais : [en]
The degradation of tetracycline over Fe3O4 catalyst was studied by using a coupled ultrasound/heterogeneous Fenton process. The effects of some key reaction parameters, the evolution of toxicity, and the reaction mechanism ...
Lire la suite >The degradation of tetracycline over Fe3O4 catalyst was studied by using a coupled ultrasound/heterogeneous Fenton process. The effects of some key reaction parameters, the evolution of toxicity, and the reaction mechanism were investigated. Experimental results showed that the stability of catalyst was significantly improved when ultrasound was employed. Under optimal conditions, 93.6% of tetracycline was removed after 60 min of treatment. The removal efficiency of the total organic carbon (TOC) at 60 min was 31.8%. The surface hydroxyl radicals were identified as the major reactive species during the oxidation process. Toxicity tests with Daphnia magna indicated that the toxicity of the solution increased during the first 60 min and then decreased as the oxidation proceeded.Lire moins >
Lire la suite >The degradation of tetracycline over Fe3O4 catalyst was studied by using a coupled ultrasound/heterogeneous Fenton process. The effects of some key reaction parameters, the evolution of toxicity, and the reaction mechanism were investigated. Experimental results showed that the stability of catalyst was significantly improved when ultrasound was employed. Under optimal conditions, 93.6% of tetracycline was removed after 60 min of treatment. The removal efficiency of the total organic carbon (TOC) at 60 min was 31.8%. The surface hydroxyl radicals were identified as the major reactive species during the oxidation process. Toxicity tests with Daphnia magna indicated that the toxicity of the solution increased during the first 60 min and then decreased as the oxidation proceeded.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
ENSCL
CNRS
Centrale Lille
Univ. Artois
Université de Lille
CNRS
Centrale Lille
Univ. Artois
Université de Lille
Collections :
Équipe(s) de recherche :
Matériaux pour la catalyse (MATCAT)
Date de dépôt :
2019-09-25T14:38:10Z