Ru/Mn Ce1O catalysts with enhanced oxygen ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Ru/Mn Ce1O catalysts with enhanced oxygen mobility and strong metal-support interaction: Exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation
Auteur(s) :
Gao, Tianyu [Auteur]
Yunnan University of Finance and Economics [Kunming, China]
Chen, Jing [Auteur]
Fang, Wenhao [Auteur]
Yunnan University of Finance and Economics [Kunming, China]
Cao, Qiue [Auteur]
Yunnan University of Finance and Economics [Kunming, China]
Su, Weiping [Auteur]
Dumeignil, Franck [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Yunnan University of Finance and Economics [Kunming, China]
Chen, Jing [Auteur]
Fang, Wenhao [Auteur]
Yunnan University of Finance and Economics [Kunming, China]
Cao, Qiue [Auteur]
Yunnan University of Finance and Economics [Kunming, China]
Su, Weiping [Auteur]
Dumeignil, Franck [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Titre de la revue :
Journal of Catalysis
Numéro :
368
Pagination :
53-68
Date de publication :
2018
Discipline(s) HAL :
Chimie/Catalyse
Résumé en anglais : [en]
Mn-Ce mixed oxides-supported Ru nanoparticles (Ru/MnXCe1OY) with enhanced oxygen mobility and strong metal-support interaction were prepared and applied to the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to ...
Lire la suite >Mn-Ce mixed oxides-supported Ru nanoparticles (Ru/MnXCe1OY) with enhanced oxygen mobility and strong metal-support interaction were prepared and applied to the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) without addition of any base additives. Oxygen and water were used as green oxidant and solvent, respectively. The catalysts were characterized in depth by XRD, H2-TPR, O2-TPD, UV–Vis DRS, XPS and TEM, to reveal materials properties from bulk to surface. The influence of Mn/Ce molar ratios in support materials and reaction parameters (i.e., HMF/Ru ratio, O2 pressure, reaction temperature and time) was systematically studied and optimized. The reaction route and rate-determining step for oxidation of HMF to FDCA over the Ru/MnXCe1OY catalysts were investigated by kinetic analysis. Well-dispersed metallic Ru nanoparticles with a mean size of 4.4 nm deposited on the support were found essential to activate and oxidize the HMF molecule. The Mn/Ce molar ratio was found to affect not only conversion of HMF but also distribution of products. The Ru/Mn6Ce1OY catalyst demonstrated an exceptional yield (≥99%) of FDCA, which corresponds in our conditions to one of the best productivity (5.3 molFDCA·molRu−1·h−1) ever reported in literature. The superior activity of the Ru/Mn6Ce1OY catalyst was mainly associated with (i) the strong metal-support interaction and (ii) the synergistic effect between manganese and cerium oxides. This catalyst showed the highest surface concentrations in Mn4+ and Ce3+ among the series, which, as a consequence, enhanced the availability and mobility of active oxygen species. This catalyst was shown resistant to deactivation during eight recycling uses thanks to a strong metal-support interaction between Ru nanoparticles and the Mn-Ce mixed oxide used as a support.Lire moins >
Lire la suite >Mn-Ce mixed oxides-supported Ru nanoparticles (Ru/MnXCe1OY) with enhanced oxygen mobility and strong metal-support interaction were prepared and applied to the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) without addition of any base additives. Oxygen and water were used as green oxidant and solvent, respectively. The catalysts were characterized in depth by XRD, H2-TPR, O2-TPD, UV–Vis DRS, XPS and TEM, to reveal materials properties from bulk to surface. The influence of Mn/Ce molar ratios in support materials and reaction parameters (i.e., HMF/Ru ratio, O2 pressure, reaction temperature and time) was systematically studied and optimized. The reaction route and rate-determining step for oxidation of HMF to FDCA over the Ru/MnXCe1OY catalysts were investigated by kinetic analysis. Well-dispersed metallic Ru nanoparticles with a mean size of 4.4 nm deposited on the support were found essential to activate and oxidize the HMF molecule. The Mn/Ce molar ratio was found to affect not only conversion of HMF but also distribution of products. The Ru/Mn6Ce1OY catalyst demonstrated an exceptional yield (≥99%) of FDCA, which corresponds in our conditions to one of the best productivity (5.3 molFDCA·molRu−1·h−1) ever reported in literature. The superior activity of the Ru/Mn6Ce1OY catalyst was mainly associated with (i) the strong metal-support interaction and (ii) the synergistic effect between manganese and cerium oxides. This catalyst showed the highest surface concentrations in Mn4+ and Ce3+ among the series, which, as a consequence, enhanced the availability and mobility of active oxygen species. This catalyst was shown resistant to deactivation during eight recycling uses thanks to a strong metal-support interaction between Ru nanoparticles and the Mn-Ce mixed oxide used as a support.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
ENSCL
CNRS
Centrale Lille
Univ. Artois
Université de Lille
CNRS
Centrale Lille
Univ. Artois
Université de Lille
Collections :
Équipe(s) de recherche :
Valorisation des alcanes et de la biomasse (VAALBIO)
Date de dépôt :
2019-09-25T15:06:55Z
2020-09-22T14:01:35Z
2020-09-22T14:01:35Z
Fichiers
- RuMgCe_HMF-FDCA.pdf
- Version éditeur
- Accès restreint
- Accéder au document