Local thermal transfer improvement by using ...
Document type :
Article dans une revue scientifique
Title :
Local thermal transfer improvement by using bimetallic architectured materials for braking application – numerical and experimental evaluations
Author(s) :
An, Tao [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Cristol, Anne-Lise [Auteur]
Laboratoire de Mécanique, Multi-physique, Multi-échelle (LaMcube) - UMR 9013
Magnier, Vincent [Auteur]
Laboratoire de Mécanique, Multi-physique, Multi-échelle (LaMcube) - UMR 9013
GRUESCU, Cosmin [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Touzin, Matthieu [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Balloy, David [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Unité Matériaux et Transformations - UMR 8207 [UMET]
Cristol, Anne-Lise [Auteur]
Laboratoire de Mécanique, Multi-physique, Multi-échelle (LaMcube) - UMR 9013
Magnier, Vincent [Auteur]
Laboratoire de Mécanique, Multi-physique, Multi-échelle (LaMcube) - UMR 9013
GRUESCU, Cosmin [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Touzin, Matthieu [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Balloy, David [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Journal title :
Applied Thermal Engineering
Abbreviated title :
Applied Thermal Engineering
Pages :
128016
Publisher :
Elsevier BV
Publication date :
2025-12
ISSN :
1359-4311
English keyword(s) :
Thermal dissipation
Bimetallic materials
Periodic foam
FEM
Tribology
Bimetallic materials
Periodic foam
FEM
Tribology
HAL domain(s) :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
English abstract : [en]
The thermal dissipation of a bimetallic material, based on Cu periodic foams filled with a classical sintered braking pad material, is studied in the present work. First, foam design (size, porosity, angle and cross-section) ...
Show more >The thermal dissipation of a bimetallic material, based on Cu periodic foams filled with a classical sintered braking pad material, is studied in the present work. First, foam design (size, porosity, angle and cross-section) and finite element method (FEM) simulation were carried out to investigate the global and local thermal diffusivity of the bimetallic materials. The samples were prepared by a mixed process of investment casting and hot pressing. The global and local thermal dissipation of the bimetallic materials were measured by laser flash analysis (LFA) and a scale-reduced tribological test bench, respectively. Finally, a thermal enhancement mechanism of foam to the bimetallic materials is discussed. The heat dissipation behavior of the bimetallic materials can be predicted due to the architecture of the foams. It is shown by both simulation and experiments that the local thermal dissipation of the bimetallic materials can be improved with decrease in representative elementary volume (REV) size of foams. The maximum diffusion distance of heat from the filler material to the foam decreases with the decrease in REV size. As a result, the heat transfer efficiency at interface increases and then the Cu foam acts as a rapid pathway, transferring the heat from the interface to the bulk.Show less >
Show more >The thermal dissipation of a bimetallic material, based on Cu periodic foams filled with a classical sintered braking pad material, is studied in the present work. First, foam design (size, porosity, angle and cross-section) and finite element method (FEM) simulation were carried out to investigate the global and local thermal diffusivity of the bimetallic materials. The samples were prepared by a mixed process of investment casting and hot pressing. The global and local thermal dissipation of the bimetallic materials were measured by laser flash analysis (LFA) and a scale-reduced tribological test bench, respectively. Finally, a thermal enhancement mechanism of foam to the bimetallic materials is discussed. The heat dissipation behavior of the bimetallic materials can be predicted due to the architecture of the foams. It is shown by both simulation and experiments that the local thermal dissipation of the bimetallic materials can be improved with decrease in representative elementary volume (REV) size of foams. The maximum diffusion distance of heat from the filler material to the foam decreases with the decrease in REV size. As a result, the heat transfer efficiency at interface increases and then the Cu foam acts as a rapid pathway, transferring the heat from the interface to the bulk.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Research team(s) :
Métallurgie Physique et Génie des Matériaux
Submission date :
2025-11-04T14:33:07Z
2025-11-05T09:01:43Z
2025-11-05T14:36:20Z
2025-11-05T09:01:43Z
2025-11-05T14:36:20Z
Files
- 1-s2.0-S1359431125026080-main.pdf
- Version éditeur
- Open access
- Access the document
