Mechanistic explanation of the (up to) 3 ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Mechanistic explanation of the (up to) 3 release phases of PLGA microparticles: Diprophylline dispersions
Author(s) :
Tamani, Fahima [Auteur]
Advanced Drug Delivery Systems (ADDS) - U1008
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Bassand, Celine [Auteur]
Advanced Drug Delivery Systems (ADDS) - U1008
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Hamoudi, Mounira [Auteur]
Advanced Drug Delivery Systems (ADDS) - U1008
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Danede, Florence [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Willart, Jean-François [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Siepmann, Florence [Auteur]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Advanced Drug Delivery Systems (ADDS) - U1008
Siepmann, Juergen [Auteur]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Advanced Drug Delivery Systems (ADDS) - U1008
Advanced Drug Delivery Systems (ADDS) - U1008
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Bassand, Celine [Auteur]
Advanced Drug Delivery Systems (ADDS) - U1008
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Hamoudi, Mounira [Auteur]
Advanced Drug Delivery Systems (ADDS) - U1008
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Danede, Florence [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Willart, Jean-François [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Siepmann, Florence [Auteur]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Advanced Drug Delivery Systems (ADDS) - U1008
Siepmann, Juergen [Auteur]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Advanced Drug Delivery Systems (ADDS) - U1008
Journal title :
International Journal of Pharmaceutics
Abbreviated title :
International Journal of Pharmaceutics
Pages :
118819
Publisher :
Elsevier BV
Publication date :
2019-11
ISSN :
0378-5173
HAL domain(s) :
Physique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
English abstract : [en]
The aim of this study was to better understand the root causes for the (up to) 3 drug release phases observed with poly (lactic-co-glycolic acid) (PLGA) microparticles containing diprophylline particles: The 1st release ...
Show more >The aim of this study was to better understand the root causes for the (up to) 3 drug release phases observed with poly (lactic-co-glycolic acid) (PLGA) microparticles containing diprophylline particles: The 1st release phase (“burst release”), 2nd release phase (with an “about constant release rate”) and 3rd release phase (which is again rapid and leads to complete drug exhaust). The behavior of single microparticles was monitored upon exposure to phosphate buffer pH 7.4, in particular with respect to their drug release and swelling behaviors. Diprophylline-loaded PLGA microparticles were prepared with a solid-in-oil-in-water solvent extraction/evaporation method. Tiny drug crystals were rather homogeneously distributed throughout the polymer matrix after manufacturing. Batches with “small” (63 µm), “medium-sized” (113 µm) and “large” (296 µm) microparticles with a practical drug loading of 5–7% were prepared. Importantly, each microparticle releases the drug “in its own way”, depending on the exact distribution of the tiny drug crystals within the system. During the burst release, drug crystals with direct surface access rapidly dissolve. During the 2nd release phase tiny drug crystals (often) located in surface near regions which undergo swelling, are likely released. During the 3rd release phase, the entire microparticle undergoes substantial swelling. This results in high quantities of water present throughout the system, which becomes “gel-like”. Consequently, the drug crystals dissolve, and the dissolved drug molecules rather rapidly diffuse through the highly swollen polymer gel.Show less >
Show more >The aim of this study was to better understand the root causes for the (up to) 3 drug release phases observed with poly (lactic-co-glycolic acid) (PLGA) microparticles containing diprophylline particles: The 1st release phase (“burst release”), 2nd release phase (with an “about constant release rate”) and 3rd release phase (which is again rapid and leads to complete drug exhaust). The behavior of single microparticles was monitored upon exposure to phosphate buffer pH 7.4, in particular with respect to their drug release and swelling behaviors. Diprophylline-loaded PLGA microparticles were prepared with a solid-in-oil-in-water solvent extraction/evaporation method. Tiny drug crystals were rather homogeneously distributed throughout the polymer matrix after manufacturing. Batches with “small” (63 µm), “medium-sized” (113 µm) and “large” (296 µm) microparticles with a practical drug loading of 5–7% were prepared. Importantly, each microparticle releases the drug “in its own way”, depending on the exact distribution of the tiny drug crystals within the system. During the burst release, drug crystals with direct surface access rapidly dissolve. During the 2nd release phase tiny drug crystals (often) located in surface near regions which undergo swelling, are likely released. During the 3rd release phase, the entire microparticle undergoes substantial swelling. This results in high quantities of water present throughout the system, which becomes “gel-like”. Consequently, the drug crystals dissolve, and the dissolved drug molecules rather rapidly diffuse through the highly swollen polymer gel.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Research team(s) :
Matériaux Moléculaires et Thérapeutiques
Submission date :
2019-11-20T14:13:01Z
2020-10-20T12:23:08Z
2020-10-20T12:23:08Z
Files
- 8-Tamani et al IJP 2019.pdf
- Version finale acceptée pour publication (postprint)
- Open access
- Access the document