Intumescent polypropylene: Interactions ...
Document type :
Article dans une revue scientifique
DOI :
Permalink :
Title :
Intumescent polypropylene: Interactions between physical and chemical expansion
Author(s) :
Bensabath, Tsilla [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Sarazin, Johan [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Jimenez, Maude [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Samyn, Fabienne [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bourbigot, Serge [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]

Unité Matériaux et Transformations (UMET) - UMR 8207
Sarazin, Johan [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Jimenez, Maude [Auteur]

Unité Matériaux et Transformations - UMR 8207 [UMET]
Samyn, Fabienne [Auteur]

Unité Matériaux et Transformations - UMR 8207 [UMET]
Bourbigot, Serge [Auteur]

Unité Matériaux et Transformations - UMR 8207 [UMET]
Journal title :
Fire and Materials
Abbreviated title :
Fire and Materials
Publisher :
Wiley
Publication date :
2019-11-24
HAL domain(s) :
Chimie/Polymères
Chimie/Matériaux
Chimie/Matériaux
English abstract : [en]
To decrease the reaction to fire of a highly flammable plastic, polypropylene (PP), the
concept of intumescence was applied. Two intumescent systems were designed on
the basis of different mechanisms: physical expansion ...
Show more >To decrease the reaction to fire of a highly flammable plastic, polypropylene (PP), the concept of intumescence was applied. Two intumescent systems were designed on the basis of different mechanisms: physical expansion with expandable graphite (EG) and chemical expansion with modified ammonium polyphosphate (AP). Fire behavior of PP containing EG, AP, or an AP/EG mixture with a total loading of 10 wt% was evaluated by cone calorimetry at 35 kW m−2. Thermocouples allowed measuring the temperature at the backside or inside samples over time and evaluating the thermal barrier of these intumescent materials. Two grades of AP (difference in composition) and several grades of EG (difference in expansion characteristics) were compared. Mixing AP and EG does not create a synergistic effect in studied conditions. Contrarily, the incorporation of small amount of EG in PP-AP modifies heat transfer in the coating, creating a strong anisotropy. Graphite worms are trapped vertically into the expanded AP, which increases the transverse heat conductivity (lower efficiency of the thermal barrier) and decreases the fire performance. This phenomenon disappears in thicker specimens. While a higher expansion volume of graphite worms improves fire performances of PP with only small amount of EG (1 wt%), this effect is not noticeable with AP/EG mixtures.Show less >
Show more >To decrease the reaction to fire of a highly flammable plastic, polypropylene (PP), the concept of intumescence was applied. Two intumescent systems were designed on the basis of different mechanisms: physical expansion with expandable graphite (EG) and chemical expansion with modified ammonium polyphosphate (AP). Fire behavior of PP containing EG, AP, or an AP/EG mixture with a total loading of 10 wt% was evaluated by cone calorimetry at 35 kW m−2. Thermocouples allowed measuring the temperature at the backside or inside samples over time and evaluating the thermal barrier of these intumescent materials. Two grades of AP (difference in composition) and several grades of EG (difference in expansion characteristics) were compared. Mixing AP and EG does not create a synergistic effect in studied conditions. Contrarily, the incorporation of small amount of EG in PP-AP modifies heat transfer in the coating, creating a strong anisotropy. Graphite worms are trapped vertically into the expanded AP, which increases the transverse heat conductivity (lower efficiency of the thermal barrier) and decreases the fire performance. This phenomenon disappears in thicker specimens. While a higher expansion volume of graphite worms improves fire performances of PP with only small amount of EG (1 wt%), this effect is not noticeable with AP/EG mixtures.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Non spécifiée
European Project :
Administrative institution(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Research team(s) :
Ingénierie des Systèmes Polymères
Submission date :
2019-11-25T09:16:50Z
2019-12-16T13:48:24Z
2019-12-16T13:48:24Z
Files
- FAM-19-0153.R1_Proof_hi.pdf
- Version soumise (preprint)
- Open access
- Access the document