• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
  • View Item
  •   LillOA Home
  • Liste des unités
  • METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

How to compare the length of stay of two ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
DOI :
10.1016/j.jval.2017.02.009
PMID :
28712630
Permalink :
http://hdl.handle.net/20.500.12210/17219
Title :
How to compare the length of stay of two samples of inpatients? a simulation study to compare type i and type ii errors of 12 statistical tests
Author(s) :
Chazard, Emmanuel [Auteur] refId
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Ficheur, Gregoire [Auteur] refId
BEUSCART, Jean-Baptiste [Auteur] orcid refId
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Preda, Cristian [Auteur] refId
Laboratoire Paul Painlevé [LPP]
Journal title :
Value in health . the journal of the International Society for Pharmacoeconomics and Outcomes Research
Abbreviated title :
Value Health
Volume number :
20
Pages :
992-998
Publication date :
2017-07-01
ISSN :
1098-3015
English keyword(s) :
outcome measurement
length of stay
methodology
statistics
HAL domain(s) :
Sciences du Vivant [q-bio]
English abstract : [en]
Although many researchers in the field of health economics and quality of care compare the length of stay (LOS) in two inpatient samples, they often fail to check whether the sample meets the assumptions made by their ...
Show more >
Although many researchers in the field of health economics and quality of care compare the length of stay (LOS) in two inpatient samples, they often fail to check whether the sample meets the assumptions made by their chosen statistical test. In fact, LOS data show a highly right-skewed, discrete distribution in which most of the observations are tied; this violates the assumptions of most statistical tests. To estimate the type I and type II errors associated with the application of 12 different statistical tests to a series of LOS samples. The LOS distribution was extracted from an exhaustive French national database of inpatient stays. The type I error was estimated using 19 sample sizes and 1,000,000 simulations per sample. The type II error was estimated in three alternative scenarios. For each test, the type I and type II errors were plotted as a function of the sample size. Gamma regression with log link, the log rank test, median regression, Poisson regression, and Weibull survival analysis presented an unacceptably high type I error. In contrast, the Student standard t test, linear regression with log link, and the Cox models had an acceptable type I error but low power. When comparing the LOS for two balanced inpatient samples, the Student t test with logarithmic or rank transformation, the Wilcoxon test, and the Kruskal-Wallis test are the only methods with an acceptable type I error and high power.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
CNRS
Université de Lille
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
  • METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Submission date :
2019-12-09T18:16:53Z
Université de Lille

Mentions légales
Université de Lille © 2017