Secondary use of healthcare structured ...
Type de document :
Article dans une revue scientifique: Article original
PMID :
URL permanente :
Titre :
Secondary use of healthcare structured data: the challenge of domain-knowledge based extraction of features
Auteur(s) :
Chazard, Emmanuel [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Ficheur, Gregoire [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Caron, Alexandre [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Lamer, Antoine [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Labreuche, Julien [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Cuggia, Marc [Auteur]
Université de Rennes [UR]
Genin, Michaël [Auteur]
221576|||Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS] (VALID)
Bouzille, Guillaume [Auteur]
Université de Rennes [UR]
Duhamel, Alain [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Ficheur, Gregoire [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Caron, Alexandre [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Lamer, Antoine [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Labreuche, Julien [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Cuggia, Marc [Auteur]
Université de Rennes [UR]
Genin, Michaël [Auteur]
221576|||Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS] (VALID)
Bouzille, Guillaume [Auteur]
Université de Rennes [UR]
Duhamel, Alain [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Titre de la revue :
Studies in Health Technology and Informatics
Nom court de la revue :
Stud Health Technol Inform
Numéro :
255
Pagination :
15-19
Date de publication :
2018-01
ISSN :
0926-9630
Mot(s)-clé(s) en anglais :
Data reuse
feature extraction
data transformation
feature extraction
data transformation
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Résumé en anglais : [en]
Secondary use of clinical structured data takes an important place in healthcare research. It was first described by Fayyad as "knowledge discovery in databases". Feature extraction is an important phase but received little ...
Lire la suite >Secondary use of clinical structured data takes an important place in healthcare research. It was first described by Fayyad as "knowledge discovery in databases". Feature extraction is an important phase but received little attention. The objectives of this paper are: 1) to propose an updated representation of data reuse in healthcare, 2) to illustrate methods and objectives of feature extraction, and 3) to discuss the place of domain-specific knowledge. METHODS: an updated representation is proposed. Then, a case study consists of automatically identifying acute renal failure and discovering risk factors, by secondary use of structured data. Finally, a literature review published par Meystre et al. is analyzed. RESULTS: 1) we propose a description of data reuse in 5 phases. Phase 1 is data preprocessing (cleansing, linkage, terminological alignment, unit conversions, deidentification), it enables to construct a data warehouse. Phase 2 is feature extraction. Phase 3 is statistical and graphical mining. Phase 4 consists of expert filtering and reorganization of statistical results. Phase 5 is decision making. 2) The case study illustrates how time-dependent features can be extracted from laboratory results and drug administrations, using domain-specific knowledge. 3) Among the 200 papers cited by Meystre et al., the first and last authors were affiliated to health institutions in 74% (68% for methodological papers, and 79% for applied papers). CONCLUSIONS: features extraction has a major impact on success of data reuse. Specific knowledge-based reasoning takes an important place in feature extraction, which requires tight collaboration between computer scientists, statisticians, and health professionals.Lire moins >
Lire la suite >Secondary use of clinical structured data takes an important place in healthcare research. It was first described by Fayyad as "knowledge discovery in databases". Feature extraction is an important phase but received little attention. The objectives of this paper are: 1) to propose an updated representation of data reuse in healthcare, 2) to illustrate methods and objectives of feature extraction, and 3) to discuss the place of domain-specific knowledge. METHODS: an updated representation is proposed. Then, a case study consists of automatically identifying acute renal failure and discovering risk factors, by secondary use of structured data. Finally, a literature review published par Meystre et al. is analyzed. RESULTS: 1) we propose a description of data reuse in 5 phases. Phase 1 is data preprocessing (cleansing, linkage, terminological alignment, unit conversions, deidentification), it enables to construct a data warehouse. Phase 2 is feature extraction. Phase 3 is statistical and graphical mining. Phase 4 consists of expert filtering and reorganization of statistical results. Phase 5 is decision making. 2) The case study illustrates how time-dependent features can be extracted from laboratory results and drug administrations, using domain-specific knowledge. 3) Among the 200 papers cited by Meystre et al., the first and last authors were affiliated to health institutions in 74% (68% for methodological papers, and 79% for applied papers). CONCLUSIONS: features extraction has a major impact on success of data reuse. Specific knowledge-based reasoning takes an important place in feature extraction, which requires tight collaboration between computer scientists, statisticians, and health professionals.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
CHU Lille
Université de Lille
Université de Lille
Date de dépôt :
2019-12-09T18:20:12Z
2024-06-05T08:28:46Z
2024-06-05T08:28:46Z