• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Territoires, Villes, Environnement & Société (TVES) - ULR 4477
  • View Item
  •   LillOA Home
  • Liste des unités
  • Territoires, Villes, Environnement & Société (TVES) - ULR 4477
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mathematical Properties of Formulations ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
Title :
Mathematical Properties of Formulations of the Gas Transmission Problem
Author(s) :
De Wolf, Daniel [Auteur]
Université du Littoral Côte d'Opale [ULCO]
Territoires, Villes, Environnement & Société - ULR 4477 [TVES]
Journal title :
TEHNIČKI GLASNIK
Pages :
133 - 137
Publisher :
University North Koprivnica
Publication date :
2017
ISSN :
1846-6168
English keyword(s) :
OR in natural resources: natural gas
variational inequalities theory: applied to prove convexity
convexity: sufficient conditions for
HAL domain(s) :
Sciences de l'Homme et Société/Gestion et management
English abstract : [en]
The paper presents the mathematical properties of several formulations for the gas transmission problem that account for the nonlinear flow pressure relations. The form of the nonlinear flow pressure relations is such that ...
Show more >
The paper presents the mathematical properties of several formulations for the gas transmission problem that account for the nonlinear flow pressure relations. The form of the nonlinear flow pressure relations is such that the model is in general nonconvex. However, we show here that under a restrictive condition (gas inlet or gas pressure fixed at every entry/outgoing node) the problem becomes convex. This result is obtained by use of the variational inequality theory. We also give a computational method to find a feasible solution to the problem and give a physical interpretation to this feasible solution.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Territoires, Villes, Environnement & Société (TVES) - ULR 4477
Source :
Harvested from HAL
Files
Thumbnail
  • https://halshs.archives-ouvertes.fr/halshs-02396747/document
  • Open access
  • Access the document
Thumbnail
  • https://halshs.archives-ouvertes.fr/halshs-02396747/document
  • Open access
  • Access the document
Thumbnail
  • https://halshs.archives-ouvertes.fr/halshs-02396747/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017