Coiled-Coil Antagonism Regulates Activity ...
Document type :
Article dans une revue scientifique
DOI :
PMID :
Permalink :
Title :
Coiled-Coil Antagonism Regulates Activity of Venus Flytrap-Domain-Containing Sensor Kinases of the BvgS Family
Author(s) :
Lesne, Elodie [Auteur]
Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 [CIIL]
Dupre, Elian [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 [CIIL]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Lensink, Marc [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Locht, Camille [Auteur]
Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 [CIIL]
Antoine, Rudy [Auteur]
Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 [CIIL]
Jacob-Dubuisson, Françoise [Auteur]
Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 [CIIL]
Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 [CIIL]
Dupre, Elian [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 [CIIL]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Lensink, Marc [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Locht, Camille [Auteur]
Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 [CIIL]
Antoine, Rudy [Auteur]
Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 [CIIL]
Jacob-Dubuisson, Françoise [Auteur]
Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 [CIIL]
Journal title :
mBio
Abbreviated title :
MBio
Volume number :
9
Publication date :
2018-02-27
ISSN :
2150-7511
English keyword(s) :
two-component regulatory systems
Bordetella pertussis
coiled coil
Sensor Kinase
BvgS family
Bordetella pertussis
coiled coil
Sensor Kinase
BvgS family
HAL domain(s) :
Chimie/Chimie théorique et/ou physique
English abstract : [en]
Bordetella pertussis controls the expression of its virulence regulon through the two-component system BvgAS. BvgS is a prototype for a family of multidomain sensor kinases. In BvgS, helical linkers connect periplasmic ...
Show more >Bordetella pertussis controls the expression of its virulence regulon through the two-component system BvgAS. BvgS is a prototype for a family of multidomain sensor kinases. In BvgS, helical linkers connect periplasmic Venus flytrap (VFT) perception domains to a cytoplasmic Per-Arnt-Sim (PAS) domain and the PAS domain to the dimerization/histidine phosphotransfer (DHp) domain of the kinase. The two linkers can adopt coiled-coil structures but cannot do so simultaneously. The first linker forms a coiled coil in the kinase mode and the second in the phosphatase mode, with the other linker in both cases showing an increase in dynamic behavior. The intervening PAS domain changes its quaternary structure between the two modes. In BvgS homologues without a PAS domain, a helical "X" linker directly connects the VFT and DHp domains. Here, we used BvgS as a platform to characterize regulation in members of the PAS-less subfamily. BvgS chimeras of homologues with natural X linkers displayed various regulation phenotypes. We identified two distinct coiled-coil registers in the N- and C-terminal portions of the X linkers. Stable coil formation in the C-terminal moiety determines the phosphatase mode, similarly to BvgS; in contrast, coil formation in the N-terminal moiety along the other register leads to the kinase mode. Thus, antagonism between two registers in the VFT-DHp linker forms the basis for activity regulation in the absence of the PAS domain. The N and C moieties of the X linker play roles similar to those played by the two independent linkers in sensor kinases with a PAS domain, providing a unified mechanism of regulation for the entire family.IMPORTANCEThe whooping cough agentBordetella pertussisuses the BvgAS sensory transduction two-component system to regulate production of its virulence factors. BvgS serves as a model for a large family of multidomain bacterial sensor kinases.B. pertussisis virulent when BvgS functions as a kinase and avirulent when it switches to phosphatase activity in response to modulating signals. Understanding the molecular regulation of those proteins might lead to new antibacterial strategies. Here, we show that the linker regions between the perception and the enzymatic domains shift between distinct states of conformation in an alternating manner in response to signals and that their antagonistic changes control sensor kinase activity. These linker regions and mechanistic principles appear to be conserved among BvgS homologues, irrespective of the presence or absence of an intervening domain between the perception and the enzymatic domains. This work has thus uncovered general molecular mechanisms that regulate activity of sensor kinases in the BvgS family.Show less >
Show more >Bordetella pertussis controls the expression of its virulence regulon through the two-component system BvgAS. BvgS is a prototype for a family of multidomain sensor kinases. In BvgS, helical linkers connect periplasmic Venus flytrap (VFT) perception domains to a cytoplasmic Per-Arnt-Sim (PAS) domain and the PAS domain to the dimerization/histidine phosphotransfer (DHp) domain of the kinase. The two linkers can adopt coiled-coil structures but cannot do so simultaneously. The first linker forms a coiled coil in the kinase mode and the second in the phosphatase mode, with the other linker in both cases showing an increase in dynamic behavior. The intervening PAS domain changes its quaternary structure between the two modes. In BvgS homologues without a PAS domain, a helical "X" linker directly connects the VFT and DHp domains. Here, we used BvgS as a platform to characterize regulation in members of the PAS-less subfamily. BvgS chimeras of homologues with natural X linkers displayed various regulation phenotypes. We identified two distinct coiled-coil registers in the N- and C-terminal portions of the X linkers. Stable coil formation in the C-terminal moiety determines the phosphatase mode, similarly to BvgS; in contrast, coil formation in the N-terminal moiety along the other register leads to the kinase mode. Thus, antagonism between two registers in the VFT-DHp linker forms the basis for activity regulation in the absence of the PAS domain. The N and C moieties of the X linker play roles similar to those played by the two independent linkers in sensor kinases with a PAS domain, providing a unified mechanism of regulation for the entire family.IMPORTANCEThe whooping cough agentBordetella pertussisuses the BvgAS sensory transduction two-component system to regulate production of its virulence factors. BvgS serves as a model for a large family of multidomain bacterial sensor kinases.B. pertussisis virulent when BvgS functions as a kinase and avirulent when it switches to phosphatase activity in response to modulating signals. Understanding the molecular regulation of those proteins might lead to new antibacterial strategies. Here, we show that the linker regions between the perception and the enzymatic domains shift between distinct states of conformation in an alternating manner in response to signals and that their antagonistic changes control sensor kinase activity. These linker regions and mechanistic principles appear to be conserved among BvgS homologues, irrespective of the presence or absence of an intervening domain between the perception and the enzymatic domains. This work has thus uncovered general molecular mechanisms that regulate activity of sensor kinases in the BvgS family.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
CHU Lille
CNRS
Université de Lille
Inserm
Institut Pasteur de Lille
CNRS
Université de Lille
Inserm
Institut Pasteur de Lille
Research team(s) :
Computational Molecular Systems Biology
Submission date :
2020-02-12T15:11:24Z
2021-05-12T07:01:26Z
2024-03-14T08:58:50Z
2021-05-12T07:01:26Z
2024-03-14T08:58:50Z
Files
- lesne-et-al-2018-coiled-coil-antagonism-regulates-activity-of-venus-flytrap-domain-containing-sensor-kinases-of-the.pdf
- Version éditeur
- Open access
- Access the document