Enthalpy-driven interactions with sulfated ...
Document type :
Article dans une revue scientifique
PMID :
Permalink :
Title :
Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides
Author(s) :
Takechi-Haraya, Yuki [Auteur]
Nadai, Ryo [Auteur]
Kimura, Hitoshi [Auteur]
Nishitsuji, Kazuchika [Auteur]
Uchimura, Kenji [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Sakai-Kato, Kumiko [Auteur]
Kawakami, Kohsaku [Auteur]
Shigenaga, Akira [Auteur]
Kawakami, Toru [Auteur]
Otaka, Akira [Auteur]
Hojo, Hironobu [Auteur]
Sakashita, Naomi [Auteur]
Saito, Hiroyuki [Auteur]
Nadai, Ryo [Auteur]
Kimura, Hitoshi [Auteur]
Nishitsuji, Kazuchika [Auteur]
Uchimura, Kenji [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Sakai-Kato, Kumiko [Auteur]
Kawakami, Kohsaku [Auteur]
Shigenaga, Akira [Auteur]
Kawakami, Toru [Auteur]
Otaka, Akira [Auteur]
Hojo, Hironobu [Auteur]
Sakashita, Naomi [Auteur]
Saito, Hiroyuki [Auteur]
Journal title :
Biochimica et biophysica acta
Abbreviated title :
Biochim. Biophys. Acta
Volume number :
1858
Pages :
1339-1349
Publication date :
2016-06
ISSN :
0006-3002
English keyword(s) :
Amino Acid Sequence
Unilamellar Liposomes
Cricetinae
Binding enthalpy
Glycosaminoglycans
Lysine peptide
Peptides
Cricetulus
Molecular Sequence Data
Cell Membrane Permeability
Cell membrane penetration
Sulfates
Thermodynamics
Animals
Arginine
Arginine peptide
Proton Magnetic Resonance Spectroscopy
Heparin
CHO Cells
Unilamellar Liposomes
Cricetinae
Binding enthalpy
Glycosaminoglycans
Lysine peptide
Peptides
Cricetulus
Molecular Sequence Data
Cell Membrane Permeability
Cell membrane penetration
Sulfates
Thermodynamics
Animals
Arginine
Arginine peptide
Proton Magnetic Resonance Spectroscopy
Heparin
CHO Cells
HAL domain(s) :
Chimie/Chimie théorique et/ou physique
English abstract : [en]
The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) ...
Show more >The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides.Show less >
Show more >The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides.Show less >
Language :
Anglais
Administrative institution(s) :
CNRS
Université de Lille
Université de Lille
Submission date :
2020-02-12T15:11:36Z