TMEM165 deficiencies in Congenital Disorders ...
Document type :
Article dans une revue scientifique
PMID :
Permalink :
Title :
TMEM165 deficiencies in Congenital Disorders of Glycosylation type II (CDG-II): Clues and evidences for roles of the protein in Golgi functions and ion homeostasis
Author(s) :
Dulary, Eudoxie [Auteur]
Potelle, Sven [Auteur]
Legrand, Dominique [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Foulquier, Francois [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Potelle, Sven [Auteur]
Legrand, Dominique [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Foulquier, Francois [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Journal title :
Tissue & Cell
Abbreviated title :
Tissue Cell
Volume number :
49
Pages :
150-156
Publication date :
2017-04
ISSN :
1532-3072
English keyword(s) :
Gdt1p
Humans
Secretory Pathway
Homeostasis
Ions
Glycosylation
N-Glycosylation
Protein Transport
TMEM165
Golgi Apparatus
Congenital Disorders of Glycosylation
Manganese and calcium golgi homeostasis
Membrane Protein
Humans
Secretory Pathway
Homeostasis
Ions
Glycosylation
N-Glycosylation
Protein Transport
TMEM165
Golgi Apparatus
Congenital Disorders of Glycosylation
Manganese and calcium golgi homeostasis
Membrane Protein
HAL domain(s) :
Chimie/Chimie théorique et/ou physique
English abstract : [en]
Congenital Disorders of Glycosylation (CDG) are rare inherited diseases causing glycosylation defects responsible for severe growth and psychomotor retardations in patients. Whereas most genetic defects affect enzymes ...
Show more >Congenital Disorders of Glycosylation (CDG) are rare inherited diseases causing glycosylation defects responsible for severe growth and psychomotor retardations in patients. Whereas most genetic defects affect enzymes directly involved in the glycosylation process, like glycosyltransferases or sugar transporters, recent findings revealed the impact of gene mutations on proteins implicated in both Golgi vesicular trafficking and ion homeostasis. TMEM165 is one of these deficient Golgi proteins found in CDG patients whose function in the secretory pathway has been deduced from several recent studies using TMEM165 deficient mammalian cells or yeast cells deficient in Gtd1p, the yeast TMEM165 ortholog. These studies actually confirm previous observations based on both sequence and predicted topology of this transmembrane protein and the phenotypes of human and yeast cells, namely that TMEM165 is very probably a transporter involved in ion homeostasis. Whereas the exact function of TMEM165 remains to be fully characterized, several studies hypothesize that TMEM165 could be a Golgi localized Ca2+/H+ antiporter. However, recent data also support the role of TMEM165 in Golgi Mn2+ homeostasis then arguing for a putative role of Mn2+ transporter for TMEM165 essential to achieve the correct N-glycosylation process of proteins in the secretory pathway. This manuscript is a review of the current state of knowledge on TMEM165 deficiencies in Congenital Disorders of Glycosylation as well as new data on function of TMEM165 and some speculative models on TMEM165/Golgi functions are discussed.Show less >
Show more >Congenital Disorders of Glycosylation (CDG) are rare inherited diseases causing glycosylation defects responsible for severe growth and psychomotor retardations in patients. Whereas most genetic defects affect enzymes directly involved in the glycosylation process, like glycosyltransferases or sugar transporters, recent findings revealed the impact of gene mutations on proteins implicated in both Golgi vesicular trafficking and ion homeostasis. TMEM165 is one of these deficient Golgi proteins found in CDG patients whose function in the secretory pathway has been deduced from several recent studies using TMEM165 deficient mammalian cells or yeast cells deficient in Gtd1p, the yeast TMEM165 ortholog. These studies actually confirm previous observations based on both sequence and predicted topology of this transmembrane protein and the phenotypes of human and yeast cells, namely that TMEM165 is very probably a transporter involved in ion homeostasis. Whereas the exact function of TMEM165 remains to be fully characterized, several studies hypothesize that TMEM165 could be a Golgi localized Ca2+/H+ antiporter. However, recent data also support the role of TMEM165 in Golgi Mn2+ homeostasis then arguing for a putative role of Mn2+ transporter for TMEM165 essential to achieve the correct N-glycosylation process of proteins in the secretory pathway. This manuscript is a review of the current state of knowledge on TMEM165 deficiencies in Congenital Disorders of Glycosylation as well as new data on function of TMEM165 and some speculative models on TMEM165/Golgi functions are discussed.Show less >
Language :
Anglais
Administrative institution(s) :
CNRS
Université de Lille
Université de Lille
Research team(s) :
Mécanismes moléculaires de la N-glycosylation et pathologies associées
Submission date :
2020-02-12T15:11:59Z