Parallel Direct Solver for the Finite ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Parallel Direct Solver for the Finite Integration Technique in Electrokinetic Problems
Author(s) :
Tinzefte, Abdellatif [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Le Menach, Yvonnick [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Korecki, Julien [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Guyomarch, Frédéric [Auteur]
Contributions of the Data parallelism to real time [DART]
Piriou, Francis [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Tinzefte, Abdellatif [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Le Menach, Yvonnick [Auteur]

Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Korecki, Julien [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Guyomarch, Frédéric [Auteur]

Contributions of the Data parallelism to real time [DART]
Piriou, Francis [Auteur]

Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Tinzefte, Abdellatif [Auteur]
Journal title :
Ieee Transactions on Magnetics
Volume number :
46
Pages :
3269 - 3272
Publisher :
Institute of Electrical and Electronics Engineers
Publication date :
2010-07-19
ISSN :
0018-9464
English keyword(s) :
Finite element methods
finite integration technique
linear systems
numerical analysis
parallel algorithms
finite integration technique
linear systems
numerical analysis
parallel algorithms
HAL domain(s) :
Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Analyse numérique [math.NA]
English abstract : [en]
The finite integration technique allows the simulation of real-world electromagnetic field problems with complex geometries. It provides a discrete reformulation of Maxwell's equations in their integral form suitable for ...
Show more >The finite integration technique allows the simulation of real-world electromagnetic field problems with complex geometries. It provides a discrete reformulation of Maxwell's equations in their integral form suitable for numerical computing. The resulting matrix equations of the discretized fields can be used for efficient numerical simulations on modern computers and can be exploited to use a parallel computing. In fact, by reordering the unknowns by the nested dissection method, it is possible to directly construct the lower triangular matrix of the Cholesky factorization with many processors without assembling the matrix system. In this paper, a parallel algorithm is proposed for the direct solution of large sparse linear systems with the finite integration technique. This direct solver has the advantage of handling singularities in the matrix of linear systems. The computational effort for these linear systems, often encountered in numerical simulation of electromagnetic phenomena by finite integration technique, is very significant in terms of run-time and memory requirements. Many numerical tests have been carried out to evaluate the performance of the parallel direct solver.Show less >
Show more >The finite integration technique allows the simulation of real-world electromagnetic field problems with complex geometries. It provides a discrete reformulation of Maxwell's equations in their integral form suitable for numerical computing. The resulting matrix equations of the discretized fields can be used for efficient numerical simulations on modern computers and can be exploited to use a parallel computing. In fact, by reordering the unknowns by the nested dissection method, it is possible to directly construct the lower triangular matrix of the Cholesky factorization with many processors without assembling the matrix system. In this paper, a parallel algorithm is proposed for the direct solution of large sparse linear systems with the finite integration technique. This direct solver has the advantage of handling singularities in the matrix of linear systems. The computational effort for these linear systems, often encountered in numerical simulation of electromagnetic phenomena by finite integration technique, is very significant in terms of run-time and memory requirements. Many numerical tests have been carried out to evaluate the performance of the parallel direct solver.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Comment :
https://hal.archives-ouvertes.fr/hal-01581077v1
Research team(s) :
Équipe Outils et Méthodes Numériques
Submission date :
2020-05-15T13:43:32Z
2022-03-02T13:04:45Z
2022-03-02T13:04:45Z
Files
- https://hal.inria.fr/hal-01581077/document
- Open access
- Access the document