On estimation in spatial functional linear ...
Type de document :
Pré-publication ou Document de travail
Titre :
On estimation in spatial functional linear regression model
Auteur(s) :
Bouka, Stephane [Auteur]
Faculté des Sciences [Université des Sciences et Techniques de Masuku]
Dabo-Niang, Sophie [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Lille économie management - UMR 9221 [LEM]
Nkiet, Guy Martial [Auteur]
Unité de recherche en mathématiques et informatique [Université des Sciences et Techniques de Masuku] [URMI]
Faculté des Sciences [Université des Sciences et Techniques de Masuku]
Dabo-Niang, Sophie [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Lille économie management - UMR 9221 [LEM]
Nkiet, Guy Martial [Auteur]
Unité de recherche en mathématiques et informatique [Université des Sciences et Techniques de Masuku] [URMI]
Mot(s)-clé(s) en anglais :
Functional linear régression
spatial functional process
mixing spatial dependence.
spatial functional process
mixing spatial dependence.
Discipline(s) HAL :
Statistiques [stat]
Mathématiques [math]
Mathématiques [math]
Résumé en anglais : [en]
In this paper, we consider a spatial functional linear regression, where a scalar response is related to a square integrable spatial functional process. We use a smoothing spline estimator for the functional slope parameter. ...
Lire la suite >In this paper, we consider a spatial functional linear regression, where a scalar response is related to a square integrable spatial functional process. We use a smoothing spline estimator for the functional slope parameter. We establish a finite sample bound for variance of this estimator under mixing spatial dependence. Then, we give a bound of the prediction error. Finally, we illustrate our results by simulations.Lire moins >
Lire la suite >In this paper, we consider a spatial functional linear regression, where a scalar response is related to a square integrable spatial functional process. We use a smoothing spline estimator for the functional slope parameter. We establish a finite sample bound for variance of this estimator under mixing spatial dependence. Then, we give a bound of the prediction error. Finally, we illustrate our results by simulations.Lire moins >
Langue :
Anglais
Collections :
Source :