On Multi-Armed Bandit Designs for Dose-Finding ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
On Multi-Armed Bandit Designs for Dose-Finding Trials
Auteur(s) :
Aziz, Maryam [Auteur]
SPOTIFY [London]
Kaufmann, Emilie [Auteur]
Scool [Scool]
Riviere, Marie-Karelle [Auteur]
SANOFI Recherche
SPOTIFY [London]
Kaufmann, Emilie [Auteur]
Scool [Scool]
Riviere, Marie-Karelle [Auteur]
SANOFI Recherche
Titre de la revue :
Journal of Machine Learning Research
Éditeur :
Microtome Publishing
Date de publication :
2021-01
ISSN :
1532-4435
Discipline(s) HAL :
Statistiques [stat]/Machine Learning [stat.ML]
Résumé en anglais : [en]
We study the problem of finding the optimal dosage in early stage clinical trials through the multi-armed bandit lens. We advocate the use of the Thompson Sampling principle, a flexible algorithm that can accommodate ...
Lire la suite >We study the problem of finding the optimal dosage in early stage clinical trials through the multi-armed bandit lens. We advocate the use of the Thompson Sampling principle, a flexible algorithm that can accommodate different types of monotonicity assumptions on the toxicity and efficacy of the doses. For the simplest version of Thompson Sampling, based on a uniform prior distribution for each dose, we provide finite-time upper bounds on the number of sub-optimal dose selections, which is unprecedented for dose-finding algorithms. Through a large simulation study, we then show that variants of Thompson Sampling based on more sophisticated prior distributions outperform state-of-the-art dose identification algorithms in different types of dose-finding studies that occur in phase I or phase I/II trials.Lire moins >
Lire la suite >We study the problem of finding the optimal dosage in early stage clinical trials through the multi-armed bandit lens. We advocate the use of the Thompson Sampling principle, a flexible algorithm that can accommodate different types of monotonicity assumptions on the toxicity and efficacy of the doses. For the simplest version of Thompson Sampling, based on a uniform prior distribution for each dose, we provide finite-time upper bounds on the number of sub-optimal dose selections, which is unprecedented for dose-finding algorithms. Through a large simulation study, we then show that variants of Thompson Sampling based on more sophisticated prior distributions outperform state-of-the-art dose identification algorithms in different types of dose-finding studies that occur in phase I or phase I/II trials.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-02533297/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02533297/file/doses.pdf
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02533297/file/doses2.pdf
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02533297/file/illustration.pdf
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02533297/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02533297/document
- Accès libre
- Accéder au document
- AKR_ClinicalTrials20.pdf
- Accès libre
- Accéder au document
- doses.pdf
- Accès libre
- Accéder au document
- illustration.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- doses2.pdf
- Accès libre
- Accéder au document