Learning from Networked Examples
Type de document :
Communication dans un congrès avec actes
Titre :
Learning from Networked Examples
Auteur(s) :
Wang, Yuyi [Auteur]
Nanjing Institute of Geology and Palaeontology [NIGPAS-CAS]
Guo, Zheng-Chu [Auteur]
Zhejiang University [Hangzhou, China]
Ramon, Jan [Auteur]
Machine Learning in Information Networks [MAGNET]
Nanjing Institute of Geology and Palaeontology [NIGPAS-CAS]
Guo, Zheng-Chu [Auteur]
Zhejiang University [Hangzhou, China]
Ramon, Jan [Auteur]

Machine Learning in Information Networks [MAGNET]
Éditeur(s) ou directeur(s) scientifique(s) :
Steve Hanneke
Lev Reyzin
Lev Reyzin
Titre de la manifestation scientifique :
ALT 2017 - 28th conference on Algorithmic Learning Theory
Ville :
Kyoto
Pays :
Japon
Date de début de la manifestation scientifique :
2017-10-15
Date de publication :
2017
Mot(s)-clé(s) en anglais :
Non-iid Sample
Networked Example
Concentration Inequality
Sample Error Bound
Generalization Error Bound
Networked Example
Concentration Inequality
Sample Error Bound
Generalization Error Bound
Discipline(s) HAL :
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Théorie de l'information [cs.IT]
Mathématiques [math]/Statistiques [math.ST]
Physique [physics]/Physique [physics]/Analyse de données, Statistiques et Probabilités [physics.data-an]
Statistiques [stat]/Machine Learning [stat.ML]
Informatique [cs]/Théorie de l'information [cs.IT]
Mathématiques [math]/Statistiques [math.ST]
Physique [physics]/Physique [physics]/Analyse de données, Statistiques et Probabilités [physics.data-an]
Statistiques [stat]/Machine Learning [stat.ML]
Résumé en anglais : [en]
Many machine learning algorithms are based on the assumption that training examples are drawn independently. However, this assumption does not hold anymore when learning from a networked sample because two or more training ...
Lire la suite >Many machine learning algorithms are based on the assumption that training examples are drawn independently. However, this assumption does not hold anymore when learning from a networked sample because two or more training examples may share some common objects, and hence share the features of these shared objects. We show that the classic approach of ignoring this problem potentially can have a harmful effect on the accuracy of statistics, and then consider alternatives. One of these is to only use independent examples, discarding other information. However, this is clearly suboptimal. We analyze sample error bounds in this networked setting, providing significantly improved results. An important component of our approach is formed by efficient sample weighting schemes, which leads to novel concentration inequalities.Lire moins >
Lire la suite >Many machine learning algorithms are based on the assumption that training examples are drawn independently. However, this assumption does not hold anymore when learning from a networked sample because two or more training examples may share some common objects, and hence share the features of these shared objects. We show that the classic approach of ignoring this problem potentially can have a harmful effect on the accuracy of statistics, and then consider alternatives. One of these is to only use independent examples, discarding other information. However, this is clearly suboptimal. We analyze sample error bounds in this networked setting, providing significantly improved results. An important component of our approach is formed by efficient sample weighting schemes, which leads to novel concentration inequalities.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-02519274/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02519274/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02519274/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- wang17a.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- wang17a.pdf
- Accès libre
- Accéder au document