Ensemble Feature Ranking
Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Ensemble Feature Ranking
Author(s) :
Jong, Kees [Auteur]
Mary, Jérémie [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Cornuéjols, Antoine [Auteur]
Mathématiques et Informatique Appliquées [MIA-Paris]
Marchiori, Elena [Auteur]
Sebag, Michèle [Auteur]
Laboratoire de Recherche en Informatique [LRI]
Mary, Jérémie [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Cornuéjols, Antoine [Auteur]
Mathématiques et Informatique Appliquées [MIA-Paris]
Marchiori, Elena [Auteur]
Sebag, Michèle [Auteur]
Laboratoire de Recherche en Informatique [LRI]
Conference title :
ECML-PKDD
City :
Pisa
Country :
Italie
Start date of the conference :
2004-09-20
Publication date :
2004-09
HAL domain(s) :
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Intelligence artificielle [cs.AI]
English abstract : [en]
A crucial issue for Machine Learning and Data Mining is Feature Selection, selecting the relevant features in order to focus the learning search. A relaxed setting for Feature Selection is known as Feature Ranking, ranking ...
Show more >A crucial issue for Machine Learning and Data Mining is Feature Selection, selecting the relevant features in order to focus the learning search. A relaxed setting for Feature Selection is known as Feature Ranking, ranking the features with respect to their relevance. This paper proposes an ensemble approach for Feature Ranking, aggre-gating feature rankings extracted along independent runs of an evolutionary learning algorithm named ROGER. The convergence of ensemble feature ranking is studied in a theoretical perspective, and a statistical model is devised for the empirical validation, inspired from the complexity framework proposed in the Constraint Satisfaction domain. Comparative experiments demonstrate the robustness of the approach for learning (a limited kind of) non-linear concepts, specifically when the features significantly outnumber the examples.Show less >
Show more >A crucial issue for Machine Learning and Data Mining is Feature Selection, selecting the relevant features in order to focus the learning search. A relaxed setting for Feature Selection is known as Feature Ranking, ranking the features with respect to their relevance. This paper proposes an ensemble approach for Feature Ranking, aggre-gating feature rankings extracted along independent runs of an evolutionary learning algorithm named ROGER. The convergence of ensemble feature ranking is studied in a theoretical perspective, and a statistical model is devised for the empirical validation, inspired from the complexity framework proposed in the Constraint Satisfaction domain. Comparative experiments demonstrate the robustness of the approach for learning (a limited kind of) non-linear concepts, specifically when the features significantly outnumber the examples.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-02482166/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-02482166/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-02482166/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-02482166/document
- Open access
- Access the document
- document
- Open access
- Access the document
- PKDD04-efr.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- PKDD04-efr.pdf
- Open access
- Access the document