A parallel generator of non-Hermitian ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
A parallel generator of non-Hermitian matrices computed from given spectra
Auteur(s) :
Wu, Xinzhe [Auteur]
Maison de la Simulation [MDLS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Centre National de la Recherche Scientifique [CNRS]
Petiton, Serge [Auteur]
Centre National de la Recherche Scientifique [CNRS]
Lu, Yutong [Auteur]
Sun Yat-sen University [Guangzhou] [SYSU]
Maison de la Simulation [MDLS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Centre National de la Recherche Scientifique [CNRS]
Petiton, Serge [Auteur]

Centre National de la Recherche Scientifique [CNRS]
Lu, Yutong [Auteur]
Sun Yat-sen University [Guangzhou] [SYSU]
Titre de la revue :
Concurrency and Computation: Practice and Experience
Éditeur :
Wiley
Date de publication :
2020
ISSN :
1532-0626
Mot(s)-clé(s) en anglais :
Non-Hermitian Matrix
Matrix Generation
Spectrum
Iterative Methods
Parallel Computing
Linear System and Eigenvalue Problem
Matrix Generation
Spectrum
Iterative Methods
Parallel Computing
Linear System and Eigenvalue Problem
Discipline(s) HAL :
Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
Informatique [cs]/Analyse numérique [cs.NA]
Informatique [cs]/Analyse numérique [cs.NA]
Résumé en anglais : [en]
Iterative linear algebra methods to solve linear systems and eigenvalue problems with non-Hermitian matrices are important for both the simulation arising from diverse scientific fields and the applications related to big ...
Lire la suite >Iterative linear algebra methods to solve linear systems and eigenvalue problems with non-Hermitian matrices are important for both the simulation arising from diverse scientific fields and the applications related to big data, machine learning and artificial intelligence. The spectral property of these matrices has impacts on the convergence of these solvers. Moreover, with the increase of the size of applications, iterative methods are implemented in parallel on clusters. Analysis of their behaviors with non-Hermitian matrices on supercomputers is so complex that we need to generate large-scale matrices with different given spectra for benchmarking. These test matrices should be non-Hermitian and non-trivial, with high dimension. This paper highlights a scalable matrix generator that constructs large sparse matrices using the user-defined spectrum, and the eigenvalues of generated matrices are ensured to be the same as the predefined spectrum. This generator is implemented on CPUs and multi-GPUs platforms, with good strong and weak scaling performance on several supercomputers. We also propose a method to verify its ability to guarantee the given spectra. Finally, we give an example to evaluate the numerical properties and parallel performance of iterative methods using this matrix generator.Lire moins >
Lire la suite >Iterative linear algebra methods to solve linear systems and eigenvalue problems with non-Hermitian matrices are important for both the simulation arising from diverse scientific fields and the applications related to big data, machine learning and artificial intelligence. The spectral property of these matrices has impacts on the convergence of these solvers. Moreover, with the increase of the size of applications, iterative methods are implemented in parallel on clusters. Analysis of their behaviors with non-Hermitian matrices on supercomputers is so complex that we need to generate large-scale matrices with different given spectra for benchmarking. These test matrices should be non-Hermitian and non-trivial, with high dimension. This paper highlights a scalable matrix generator that constructs large sparse matrices using the user-defined spectrum, and the eigenvalues of generated matrices are ensured to be the same as the predefined spectrum. This generator is implemented on CPUs and multi-GPUs platforms, with good strong and weak scaling performance on several supercomputers. We also propose a method to verify its ability to guarantee the given spectra. Finally, we give an example to evaluate the numerical properties and parallel performance of iterative methods using this matrix generator.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-02469027/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02469027/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02469027/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02469027/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Vecpar_Special_Issue.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Vecpar_Special_Issue.pdf
- Accès libre
- Accéder au document