Amélioration des réseaux de neurones ...
Document type :
Thèse
Title :
Amélioration des réseaux de neurones impulsionnels entraînés avec la STDP pour la reconnaissance d'images
English title :
Improving Spiking Neural Networks Trained with Spike Timing Dependent Plasticity for Image Recognition
Author(s) :
Falez, Pierre [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Thesis director(s) :
Pierre Boulet
Defence date :
2019-10-10
Jury president :
Pierre Tirilly
Ioan Marius Bilasco
Philippe Devienne
Nathalie H. Rolland
Timothée Masquelier
Benoît Miramond
Sander M. Bohte
Ioan Marius Bilasco
Philippe Devienne
Nathalie H. Rolland
Timothée Masquelier
Benoît Miramond
Sander M. Bohte
Jury member(s) :
Pierre Tirilly
Ioan Marius Bilasco
Philippe Devienne
Nathalie H. Rolland
Timothée Masquelier
Benoît Miramond
Sander M. Bohte
Ioan Marius Bilasco
Philippe Devienne
Nathalie H. Rolland
Timothée Masquelier
Benoît Miramond
Sander M. Bohte
Accredited body :
Université de Lille
Keyword(s) :
Réseau de neurone impulsionnels
English keyword(s) :
Spiking Neural Networks
STDP
Image classification
STDP
Image classification
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
French abstract :
La vision par ordinateur est un domaine stratégique, du fait du nombre potentiel d'applications avec un impact important sur la société. Ce secteur a rapidement progressé au cours de ces dernières années, notamment grâce ...
Show more >La vision par ordinateur est un domaine stratégique, du fait du nombre potentiel d'applications avec un impact important sur la société. Ce secteur a rapidement progressé au cours de ces dernières années, notamment grâce aux avancées en intelligence artificielle et plus particulièrement l'avènement de l'apprentissage profond. Cependant, ces méthodes présentent deux défauts majeurs face au cerveau biologique : ils sont extrêmement énergivores et requièrent de gigantesques bases d'apprentissage étiquetées. Les réseaux de neurones à impulsions sont des modèles alternatifs qui permettent de répondre à la problématique de la consommation énergétique. Ces modèles ont la propriété de pouvoir être implémentés de manière très efficace sur du matériel, afin de créer des architectures très basse consommation. En contrepartie, ces modèles imposent certaines contraintes, comme l'utilisation uniquement de mémoire et de calcul locaux. Cette limitation empêche l'utilisation de méthodes d'apprentissage traditionnelles, telles que la rétro-propagation du gradient. La STDP est une règle d'apprentissage, observée dans la biologie, qui peut être utilisée dans les réseaux de neurones à impulsions. Cette règle renforce les synapses où des corrélations locales entre les temps d'impulsions sont détectées, et affaiblit les autres synapses. La nature locale et non-supervisée permet à la fois de respecter les contraintes des architectures neuromorphiques, et donc d'être implémentable de manière efficace, mais permet également de répondre aux problématiques d'étiquetage des bases d'apprentissage. Cependant, les réseaux de neurones à impulsions entraînés grâce à la STDP souffrent pour le moment de performances inférieures aux méthodes d'apprentissage profond. La littérature entourant la STDP utilise très majoritairement des données simples mais le comportement de cette règle n'a été que très peu étudié sur des données plus complexes, tel que sur des bases avec une variété d'images importante.L'objectif de ce manuscrit est d'étudier le comportement des modèles impulsionnels, entraîné via la STDP, sur des tâches de classification d'images. Le but principal est d'améliorer les performances de ces modèles, tout en respectant un maximum les contraintes imposées par les architectures neuromorphiques. Une première partie des contributions proposées dans ce manuscrit s'intéresse à la simulation logicielle des réseaux de neurones impulsionnels. L'implémentation matérielle étant un processus long et coûteux, l'utilisation de simulation est une bonne alternative pour étudier plus rapidement le comportement des différents modèles. La suite des contributions s'intéresse à la mise en place de réseaux impulsionnels multi-couches. Les réseaux composés d'un empilement de couches, tel que les méthodes d'apprentissage profond, permettent de traiter des données beaucoup plus complexes. Un des chapitres s'articule autour de la problématique de perte de fréquence observée dans les réseaux de neurones à impulsions. Ce problème empêche l'empilement de plusieurs couches de neurones impulsionnels. Une autre partie des contributions se concentre sur l'étude du comportement de la STDP sur des jeux de données plus complexes, tels que les images naturelles en couleur. Plusieurs mesures sont utilisées, telle que la cohérence des filtres ou la dispersion des activations, afin de mieux comprendre les raisons de l'écart de performances entre la STDP et les méthodes plus traditionnelles. Finalement, la réalisation de réseaux multi-couches est décrite dans la dernière partie des contributions. Pour ce faire, un nouveau mécanisme d'adaptation des seuils est introduit ainsi qu'un protocole permettant l'apprentissage multi-couches. Il est notamment démontré que de tels réseaux parviennent à améliorer l'état de l'art autour de la STDP.Show less >
Show more >La vision par ordinateur est un domaine stratégique, du fait du nombre potentiel d'applications avec un impact important sur la société. Ce secteur a rapidement progressé au cours de ces dernières années, notamment grâce aux avancées en intelligence artificielle et plus particulièrement l'avènement de l'apprentissage profond. Cependant, ces méthodes présentent deux défauts majeurs face au cerveau biologique : ils sont extrêmement énergivores et requièrent de gigantesques bases d'apprentissage étiquetées. Les réseaux de neurones à impulsions sont des modèles alternatifs qui permettent de répondre à la problématique de la consommation énergétique. Ces modèles ont la propriété de pouvoir être implémentés de manière très efficace sur du matériel, afin de créer des architectures très basse consommation. En contrepartie, ces modèles imposent certaines contraintes, comme l'utilisation uniquement de mémoire et de calcul locaux. Cette limitation empêche l'utilisation de méthodes d'apprentissage traditionnelles, telles que la rétro-propagation du gradient. La STDP est une règle d'apprentissage, observée dans la biologie, qui peut être utilisée dans les réseaux de neurones à impulsions. Cette règle renforce les synapses où des corrélations locales entre les temps d'impulsions sont détectées, et affaiblit les autres synapses. La nature locale et non-supervisée permet à la fois de respecter les contraintes des architectures neuromorphiques, et donc d'être implémentable de manière efficace, mais permet également de répondre aux problématiques d'étiquetage des bases d'apprentissage. Cependant, les réseaux de neurones à impulsions entraînés grâce à la STDP souffrent pour le moment de performances inférieures aux méthodes d'apprentissage profond. La littérature entourant la STDP utilise très majoritairement des données simples mais le comportement de cette règle n'a été que très peu étudié sur des données plus complexes, tel que sur des bases avec une variété d'images importante.L'objectif de ce manuscrit est d'étudier le comportement des modèles impulsionnels, entraîné via la STDP, sur des tâches de classification d'images. Le but principal est d'améliorer les performances de ces modèles, tout en respectant un maximum les contraintes imposées par les architectures neuromorphiques. Une première partie des contributions proposées dans ce manuscrit s'intéresse à la simulation logicielle des réseaux de neurones impulsionnels. L'implémentation matérielle étant un processus long et coûteux, l'utilisation de simulation est une bonne alternative pour étudier plus rapidement le comportement des différents modèles. La suite des contributions s'intéresse à la mise en place de réseaux impulsionnels multi-couches. Les réseaux composés d'un empilement de couches, tel que les méthodes d'apprentissage profond, permettent de traiter des données beaucoup plus complexes. Un des chapitres s'articule autour de la problématique de perte de fréquence observée dans les réseaux de neurones à impulsions. Ce problème empêche l'empilement de plusieurs couches de neurones impulsionnels. Une autre partie des contributions se concentre sur l'étude du comportement de la STDP sur des jeux de données plus complexes, tels que les images naturelles en couleur. Plusieurs mesures sont utilisées, telle que la cohérence des filtres ou la dispersion des activations, afin de mieux comprendre les raisons de l'écart de performances entre la STDP et les méthodes plus traditionnelles. Finalement, la réalisation de réseaux multi-couches est décrite dans la dernière partie des contributions. Pour ce faire, un nouveau mécanisme d'adaptation des seuils est introduit ainsi qu'un protocole permettant l'apprentissage multi-couches. Il est notamment démontré que de tels réseaux parviennent à améliorer l'état de l'art autour de la STDP.Show less >
English abstract : [en]
Computer vision is a strategic field, in consequence of its great number of potential applications which could have a high impact on society. This area has quickly improved over the last decades, especially thanks to the ...
Show more >Computer vision is a strategic field, in consequence of its great number of potential applications which could have a high impact on society. This area has quickly improved over the last decades, especially thanks to the advances of artificial intelligence and more particularly thanks to the accession of deep learning. Nevertheless, these methods present two main drawbacks in contrast with biological brains: they are extremely energy intensive and they need large labeled training sets. Spiking neural networks are alternative models offering an answer to the energy consumption issue. One attribute of these models is that they can be implemented very efficiently on hardware, in order to build ultra low-power architectures. In return, these models impose certain limitations, such as the use of only local memory and computations. It prevents the use of traditional learning methods, for example the gradient back-propagation. STDP is a learning rule, observed in biology, which can be used in spiking neural networks. This rule reinforces the synapses in which local correlations of spike timing are detected. It also weakens the other synapses. The fact that it is local and unsupervised makes it possible to abide by the constraints of neuromorphic architectures, which means it can be implemented efficiently, but it also provides a solution to the data set labeling issue. However, spiking neural networks trained with the STDP rule are affected by lower performances in comparison to those following a deep learning process. The literature about STDP still uses simple data but the behavior of this rule has seldom been used with more complex data, such as sets made of a large variety of real-world images.The aim of this manuscript is to study the behavior of these spiking models, trained through the STDP rule, on image classification tasks. The main goal is to improve the performances of these models, while respecting as much as possible the constraints of neuromorphic architectures. The first contribution focuses on the software simulations of spiking neural networks. Hardware implementation being a long and costly process, using simulation is a good alternative in order to study more quickly the behavior of different models. Then, the contributions focus on the establishment of multi-layered spiking networks; networks made of several layers, such as those in deep learning methods, allow to process more complex data. One of the chapters revolves around the matter of frequency loss seen in several spiking neural networks. This issue prevents the stacking of multiple spiking layers. The center point then switches to a study of STDP behavior on more complex data, especially colored real-world image. Multiple measurements are used, such as the coherence of filters or the sparsity of activations, to better understand the reasons for the performance gap between STDP and the more traditional methods. Lastly, the manuscript describes the making of multi-layered networks. To this end, a new threshold adaptation mechanism is introduced, along with a multi-layer training protocol. It is proven that such networks can improve the state-of-the-art for STDP.Show less >
Show more >Computer vision is a strategic field, in consequence of its great number of potential applications which could have a high impact on society. This area has quickly improved over the last decades, especially thanks to the advances of artificial intelligence and more particularly thanks to the accession of deep learning. Nevertheless, these methods present two main drawbacks in contrast with biological brains: they are extremely energy intensive and they need large labeled training sets. Spiking neural networks are alternative models offering an answer to the energy consumption issue. One attribute of these models is that they can be implemented very efficiently on hardware, in order to build ultra low-power architectures. In return, these models impose certain limitations, such as the use of only local memory and computations. It prevents the use of traditional learning methods, for example the gradient back-propagation. STDP is a learning rule, observed in biology, which can be used in spiking neural networks. This rule reinforces the synapses in which local correlations of spike timing are detected. It also weakens the other synapses. The fact that it is local and unsupervised makes it possible to abide by the constraints of neuromorphic architectures, which means it can be implemented efficiently, but it also provides a solution to the data set labeling issue. However, spiking neural networks trained with the STDP rule are affected by lower performances in comparison to those following a deep learning process. The literature about STDP still uses simple data but the behavior of this rule has seldom been used with more complex data, such as sets made of a large variety of real-world images.The aim of this manuscript is to study the behavior of these spiking models, trained through the STDP rule, on image classification tasks. The main goal is to improve the performances of these models, while respecting as much as possible the constraints of neuromorphic architectures. The first contribution focuses on the software simulations of spiking neural networks. Hardware implementation being a long and costly process, using simulation is a good alternative in order to study more quickly the behavior of different models. Then, the contributions focus on the establishment of multi-layered spiking networks; networks made of several layers, such as those in deep learning methods, allow to process more complex data. One of the chapters revolves around the matter of frequency loss seen in several spiking neural networks. This issue prevents the stacking of multiple spiking layers. The center point then switches to a study of STDP behavior on more complex data, especially colored real-world image. Multiple measurements are used, such as the coherence of filters or the sparsity of activations, to better understand the reasons for the performance gap between STDP and the more traditional methods. Lastly, the manuscript describes the making of multi-layered networks. To this end, a new threshold adaptation mechanism is introduced, along with a multi-layer training protocol. It is proven that such networks can improve the state-of-the-art for STDP.Show less >
Language :
Anglais
Collections :
Source :
Files
- https://hal.archives-ouvertes.fr/tel-02429539/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/tel-02429539/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/tel-02429539/document
- Open access
- Access the document
- document
- Open access
- Access the document
- main.pdf
- Open access
- Access the document