Energy Management for Microgrids: a ...
Document type :
Communication dans un congrès avec actes
Title :
Energy Management for Microgrids: a Reinforcement Learning Approach
Author(s) :
Levent, Tanguy [Auteur]
Laboratoire de physique des interfaces et des couches minces [Palaiseau] [LPICM]
Preux, Philippe [Auteur]
Sequential Learning [SEQUEL]
Le Pennec, Erwan [Auteur]
Centre de Mathématiques Appliquées - Ecole Polytechnique [CMAP]
Modélisation en pharmacologie de population [XPOP]
Badosa, Jordi [Auteur]
Laboratoire de Météorologie Dynamique (UMR 8539) [LMD]
Henri, Gonzague [Auteur]
TOTAL S.A.
Bonnassieux, Yvan [Auteur]
Laboratoire de physique des interfaces et des couches minces [Palaiseau] [LPICM]
Laboratoire de physique des interfaces et des couches minces [Palaiseau] [LPICM]
Preux, Philippe [Auteur]
Sequential Learning [SEQUEL]
Le Pennec, Erwan [Auteur]
Centre de Mathématiques Appliquées - Ecole Polytechnique [CMAP]
Modélisation en pharmacologie de population [XPOP]
Badosa, Jordi [Auteur]
Laboratoire de Météorologie Dynamique (UMR 8539) [LMD]
Henri, Gonzague [Auteur]
TOTAL S.A.
Bonnassieux, Yvan [Auteur]
Laboratoire de physique des interfaces et des couches minces [Palaiseau] [LPICM]
Conference title :
ISGT-Europe 2019 - IEEE PES Innovative Smart Grid Technologies Europe
City :
Bucharest
Country :
France
Start date of the conference :
2019-09-29
Journal title :
Proc. ISGT-Europe 2019 - IEEE PES Innovative Smart Grid Technologies Europe
Publisher :
IEEE
English keyword(s) :
Index Terms-Microgrid
Energy Management System
Agent Based
Supervised Learning
Reinforcement Learning
Energy Management System
Agent Based
Supervised Learning
Reinforcement Learning
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
Statistiques [stat]/Machine Learning [stat.ML]
Sciences de l'ingénieur [physics]/Energie électrique
Statistiques [stat]/Machine Learning [stat.ML]
Sciences de l'ingénieur [physics]/Energie électrique
English abstract : [en]
This paper presents a framework based on reinforcement learning for energy management and economic dispatch of an islanded microgrid without any forecasting module. The architecture of the algorithm is divided in two parts: ...
Show more >This paper presents a framework based on reinforcement learning for energy management and economic dispatch of an islanded microgrid without any forecasting module. The architecture of the algorithm is divided in two parts: a learning phase trained by a reinforcement learning (RL) algorithm on a small dataset and the testing phase based on a decision tree induced from the trained RL. An advantage of this approach is to create an autonomous agent, able to react in real-time, considering only the past. This framework was tested on real data acquired at Ecole Polytechnique in France over a long period of time, with a large diversity in the type of days considered. It showed near optimal, efficient and stable results in each situation.Show less >
Show more >This paper presents a framework based on reinforcement learning for energy management and economic dispatch of an islanded microgrid without any forecasting module. The architecture of the algorithm is divided in two parts: a learning phase trained by a reinforcement learning (RL) algorithm on a small dataset and the testing phase based on a decision tree induced from the trained RL. An advantage of this approach is to create an autonomous agent, able to react in real-time, considering only the past. This framework was tested on real data acquired at Ecole Polytechnique in France over a long period of time, with a large diversity in the type of days considered. It showed near optimal, efficient and stable results in each situation.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-02382232/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-02382232/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-02382232/document
- Open access
- Access the document
- document
- Open access
- Access the document
- Paper_Draft2.pdf
- Open access
- Access the document