Learning Multiple Markov Chains via Adaptive ...
Type de document :
Communication dans un congrès avec actes
Titre :
Learning Multiple Markov Chains via Adaptive Allocation
Auteur(s) :
Talebi, Mohammad [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sequential Learning [SEQUEL]
Maillard, Odalric Ambrym [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sequential Learning [SEQUEL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sequential Learning [SEQUEL]
Maillard, Odalric Ambrym [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sequential Learning [SEQUEL]
Titre de la manifestation scientifique :
Advances in Neural Information Processing Systems 32 (NIPS 2019)
Ville :
Vancouver
Pays :
Canada
Date de début de la manifestation scientifique :
2019-12
Discipline(s) HAL :
Mathématiques [math]/Statistiques [math.ST]
Statistiques [stat]/Machine Learning [stat.ML]
Statistiques [stat]/Machine Learning [stat.ML]
Résumé en anglais : [en]
We study the problem of learning the transition matrices of a set of Markov chains from a single stream of observations on each chain. We assume that the Markov chains are ergodic but otherwise unknown. The learner can ...
Lire la suite >We study the problem of learning the transition matrices of a set of Markov chains from a single stream of observations on each chain. We assume that the Markov chains are ergodic but otherwise unknown. The learner can sample Markov chains sequentially to observe their states. The goal of the learner is to sequentially select various chains to learn transition matrices uniformly well with respect to some loss function. We introduce a notion of loss that naturally extends the squared loss for learning distributions to the case of Markov chains, and further characterize the notion of being uniformly good in all problem instances. We present a novel learning algorithm that efficiently balances exploration and exploitation intrinsic to this problem, without any prior knowledge of the chains. We provide finite-sample PAC-type guarantees on the performance of the algorithm. Further, we show that our algorithm asymptotically attains an optimal loss.Lire moins >
Lire la suite >We study the problem of learning the transition matrices of a set of Markov chains from a single stream of observations on each chain. We assume that the Markov chains are ergodic but otherwise unknown. The learner can sample Markov chains sequentially to observe their states. The goal of the learner is to sequentially select various chains to learn transition matrices uniformly well with respect to some loss function. We introduce a notion of loss that naturally extends the squared loss for learning distributions to the case of Markov chains, and further characterize the notion of being uniformly good in all problem instances. We present a novel learning algorithm that efficiently balances exploration and exploitation intrinsic to this problem, without any prior knowledge of the chains. We provide finite-sample PAC-type guarantees on the performance of the algorithm. Further, we show that our algorithm asymptotically attains an optimal loss.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-02387345/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02387345/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02387345/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- AL_MC_HAL.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- AL_MC_HAL.pdf
- Accès libre
- Accéder au document