• English
    • français
  • Aide
  •  | 
  • Contact
  •  | 
  • À Propos
  •  | 
  • Ouvrir une session
  • Portail HAL
  •  | 
  • Pages Pro Chercheurs
  • EN
  •  / 
  • FR
Voir le document 
  •   Accueil de LillOA
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • Voir le document
  •   Accueil de LillOA
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Self-Educated Language Agent With Hindsight ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Type de document :
Pré-publication ou Document de travail
Titre :
Self-Educated Language Agent With Hindsight Experience Replay For Instruction Following
Auteur(s) :
Cideron, Geoffrey [Auteur]
Sequential Learning [SEQUEL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Seurin, Mathieu [Auteur]
Sequential Learning [SEQUEL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Université de Lille
Strub, Florian [Auteur]
DeepMind [London]
DeepMind [Paris]
Pietquin, Olivier [Auteur]
Google Brain, Paris
Discipline(s) HAL :
Informatique [cs]/Réseau de neurones [cs.NE]
Informatique [cs]/Intelligence artificielle [cs.AI]
Résumé en anglais : [en]
Language creates a compact representation of the world and allows the description of unlimited situations and objectives through compositionality. These properties make it a natural fit to guide the training of interactive ...
Lire la suite >
Language creates a compact representation of the world and allows the description of unlimited situations and objectives through compositionality. These properties make it a natural fit to guide the training of interactive agents as it could ease recurrent challenges in Reinforcement Learning such as sample complexity, generalization, or multi-tasking. Yet, it remains an open-problem to relate language and RL in even simple instruction following scenarios. Current methods rely on expert demonstrations, auxiliary losses, or inductive biases in neural architectures. In this paper, we propose an orthogonal approach called Textual Hindsight Experience Replay (THER) that extends the Hindsight Experience Replay approach to the language setting. Whenever the agent does not fulfill its instruction, THER learns to output a new directive that matches the agent trajectory, and it relabels the episode with a positive reward. To do so, THER learns to map a state into an instruction by using past successful trajectories, which removes the need to have external expert interventions to relabel episodes as in vanilla HER. We observe that this simple idea also initiates a learning synergy between language acquisition and policy learning on instruction following tasks in the BabyAI environment.Lire moins >
Langue :
Anglais
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Fichiers
Thumbnail
  • http://arxiv.org/pdf/1910.09451
  • Accès libre
  • Accéder au document
Thumbnail
  • 1910.09451
  • Accès libre
  • Accéder au document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017