On semantic detection of cloud API (anti)patterns
Type de document :
Article dans une revue scientifique: Article original
Titre :
On semantic detection of cloud API (anti)patterns
Auteur(s) :
Brabra, Hayet [Auteur]
Multimedia, InfoRmation systems and Advanced Computing Laboratory [MIRACL]
Département Informatique [TSP - INF]
Architecture, Cloud continuum, formal Models, artificial intElligence and Services in distributed computing [ACMES-SAMOVAR]
Centre National de la Recherche Scientifique [CNRS]
Mtibaa, Achraf [Auteur]
Multimedia, InfoRmation systems and Advanced Computing Laboratory [MIRACL]
Université de Sfax
Petrillo, Fabio [Auteur]
Laboratory for Research on Technology for ECommerce [LATECE Laboratory - UQAM Montreal]
École Polytechnique de Montréal [EPM]
Merle, Philippe [Auteur]
Self-adaptation for distributed services and large software systems [SPIRALS]
Centre Inria de l'Université de Lille
Sliman, Layth [Auteur]
Efrei (Villejuif / Bordeaux) [Efrei]
Efrei Research Lab
Moha, Naouel [Auteur]
Département d'Informatique et de Recherche Opérationnelle [Montreal] [DIRO]
Laboratory for Research on Technology for ECommerce [LATECE Laboratory - UQAM Montreal]
Gaaloul, Walid [Auteur]
Département Informatique [TSP - INF]
Architecture, Cloud continuum, formal Models, artificial intElligence and Services in distributed computing [ACMES-SAMOVAR]
Centre National de la Recherche Scientifique [CNRS]
Institut Polytechnique de Paris [IP Paris]
Gueheneuc, Yann-Gael [Auteur]
École Polytechnique de Montréal [EPM]
Benatallah, Boualem [Auteur]
Computer Science and Engineering [Sydney] [CSE]
University of New South Wales [Sydney] [UNSW]
Gargouri, Faiez [Auteur]
Multimedia, InfoRmation systems and Advanced Computing Laboratory [MIRACL]
Multimedia, InfoRmation systems and Advanced Computing Laboratory [MIRACL]
Département Informatique [TSP - INF]
Architecture, Cloud continuum, formal Models, artificial intElligence and Services in distributed computing [ACMES-SAMOVAR]
Centre National de la Recherche Scientifique [CNRS]
Mtibaa, Achraf [Auteur]
Multimedia, InfoRmation systems and Advanced Computing Laboratory [MIRACL]
Université de Sfax
Petrillo, Fabio [Auteur]
Laboratory for Research on Technology for ECommerce [LATECE Laboratory - UQAM Montreal]
École Polytechnique de Montréal [EPM]
Merle, Philippe [Auteur]

Self-adaptation for distributed services and large software systems [SPIRALS]
Centre Inria de l'Université de Lille
Sliman, Layth [Auteur]
Efrei (Villejuif / Bordeaux) [Efrei]
Efrei Research Lab
Moha, Naouel [Auteur]
Département d'Informatique et de Recherche Opérationnelle [Montreal] [DIRO]
Laboratory for Research on Technology for ECommerce [LATECE Laboratory - UQAM Montreal]
Gaaloul, Walid [Auteur]
Département Informatique [TSP - INF]
Architecture, Cloud continuum, formal Models, artificial intElligence and Services in distributed computing [ACMES-SAMOVAR]
Centre National de la Recherche Scientifique [CNRS]
Institut Polytechnique de Paris [IP Paris]
Gueheneuc, Yann-Gael [Auteur]
École Polytechnique de Montréal [EPM]
Benatallah, Boualem [Auteur]
Computer Science and Engineering [Sydney] [CSE]
University of New South Wales [Sydney] [UNSW]
Gargouri, Faiez [Auteur]
Multimedia, InfoRmation systems and Advanced Computing Laboratory [MIRACL]
Titre de la revue :
Information and Software Technology
Pagination :
65 - 82
Éditeur :
Elsevier
Date de publication :
2019-03
ISSN :
0950-5849
Mot(s)-clé(s) en anglais :
Specification
Anti-pattern
Detection
Ontology
Cloud computing
Pattern
REST
OCCI
Analysis
Anti-pattern
Detection
Ontology
Cloud computing
Pattern
REST
OCCI
Analysis
Discipline(s) HAL :
Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
Informatique [cs]
Informatique [cs]/Génie logiciel [cs.SE]
Informatique [cs]
Informatique [cs]/Génie logiciel [cs.SE]
Résumé en anglais : [en]
Context:Open standards are urgently needed for enabling software interoperability in Cloud Computing. Open Cloud Computing Interface (OCCI) provides a set of best design principles to create interoperable REST management ...
Lire la suite >Context:Open standards are urgently needed for enabling software interoperability in Cloud Computing. Open Cloud Computing Interface (OCCI) provides a set of best design principles to create interoperable REST management APIs. Although OCCI is the only standard addressing the management of any kind of cloud resources, it does not support a range of best principles related to REST design. This often worsens REST API quality by decreasing their understandability and reusability.Objective:We aim at assisting cloud developers to enhance their REST management APIs by providing a compliance evaluation of OCCI and REST best principles and a recommendation support to comply with these principles.Method:First, we leverage patterns and anti-patterns to drive respectively the good and poor practices of OCCI and REST best principles. Then, we propose a semantic-based approach for defining and detecting REST and OCCI (anti)patterns and providing a set of correction recommendations to comply with both REST and OCCI best principles. We validated this approach by applying it on cloud REST APIs and evaluating its accuracy, usefulness and extensibility.Results:We found that our approach accurately detects OCCI and REST(anti)patterns and provides useful recommendations. According to the compliance results, we reveal that there is no widespread adoption of OCCI principles in existing APIs. In contrast, these APIs have reached an acceptable level of maturity regarding REST principles.Conclusion:Our approach provides an effective and extensible technique for defining and detecting OCCI and REST (anti)patterns in Cloud REST APIs. Cloud software developers can benefit from our approach and defined principles to accurately evaluate their APIs from OCCI and REST perspectives. This contributes in designing interoperable, understandable, and reusable Cloud management APIs. Thank to the compliance analysis and the recommendation support, we also contribute to improving these APIs, which make them more straightforward.Lire moins >
Lire la suite >Context:Open standards are urgently needed for enabling software interoperability in Cloud Computing. Open Cloud Computing Interface (OCCI) provides a set of best design principles to create interoperable REST management APIs. Although OCCI is the only standard addressing the management of any kind of cloud resources, it does not support a range of best principles related to REST design. This often worsens REST API quality by decreasing their understandability and reusability.Objective:We aim at assisting cloud developers to enhance their REST management APIs by providing a compliance evaluation of OCCI and REST best principles and a recommendation support to comply with these principles.Method:First, we leverage patterns and anti-patterns to drive respectively the good and poor practices of OCCI and REST best principles. Then, we propose a semantic-based approach for defining and detecting REST and OCCI (anti)patterns and providing a set of correction recommendations to comply with both REST and OCCI best principles. We validated this approach by applying it on cloud REST APIs and evaluating its accuracy, usefulness and extensibility.Results:We found that our approach accurately detects OCCI and REST(anti)patterns and provides useful recommendations. According to the compliance results, we reveal that there is no widespread adoption of OCCI principles in existing APIs. In contrast, these APIs have reached an acceptable level of maturity regarding REST principles.Conclusion:Our approach provides an effective and extensible technique for defining and detecting OCCI and REST (anti)patterns in Cloud REST APIs. Cloud software developers can benefit from our approach and defined principles to accurately evaluate their APIs from OCCI and REST perspectives. This contributes in designing interoperable, understandable, and reusable Cloud management APIs. Thank to the compliance analysis and the recommendation support, we also contribute to improving these APIs, which make them more straightforward.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-02375380/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02375380/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02375380/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- On%20Semantic%20Detection%20of%20Cloud%20API%20%28Anti%29Patterns.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- On%20Semantic%20Detection%20of%20Cloud%20API%20%28Anti%29Patterns.pdf
- Accès libre
- Accéder au document