MATAM: reconstruction of phylogenetic ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
MATAM: reconstruction of phylogenetic marker genes from short sequencing reads in metagenomes
Auteur(s) :
Pericard, Pierre [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Bioinformatics and Sequence Analysis [BONSAI]
Dufresne, Yoann [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Bioinformatics and Sequence Analysis [BONSAI]
Couderc, Loïc [Auteur]
Plateforme de bioinformatique et de biostatistique de Lille - PLBS [Bilille]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Blanquart, Samuel [Auteur]
Bioinformatics and Sequence Analysis [BONSAI]
Touzet, Helene [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Bioinformatics and Sequence Analysis [BONSAI]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Bioinformatics and Sequence Analysis [BONSAI]
Dufresne, Yoann [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Bioinformatics and Sequence Analysis [BONSAI]
Couderc, Loïc [Auteur]
Plateforme de bioinformatique et de biostatistique de Lille - PLBS [Bilille]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Blanquart, Samuel [Auteur]
Bioinformatics and Sequence Analysis [BONSAI]
Touzet, Helene [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Bioinformatics and Sequence Analysis [BONSAI]
Titre de la revue :
Bioinformatics
Pagination :
585-591
Éditeur :
Oxford University Press (OUP)
Date de publication :
2017-10-11
ISSN :
1367-4803
Discipline(s) HAL :
Sciences du Vivant [q-bio]/Bio-Informatique, Biologie Systémique [q-bio.QM]
Résumé en anglais : [en]
Motivation: Advances in the sequencing of uncultured environmental samples, dubbed metagenomics, raise a growing need for accurate taxonomic assignment. Accurate identification of organisms present within a community is ...
Lire la suite >Motivation: Advances in the sequencing of uncultured environmental samples, dubbed metagenomics, raise a growing need for accurate taxonomic assignment. Accurate identification of organisms present within a community is essential to understanding even the most elementary ecosystems. However, current high-throughput sequencing technologies generate short reads which partially cover full-length marker genes and this poses difficult bioinformatic challenges for taxonomy identification at high resolution. Results: We designed MATAM, a software dedicated to the fast and accurate targeted assembly of short reads sequenced from a genomic marker of interest. The method implements a stepwise process based on construction and analysis of a read overlap graph. It is applied to the assembly of 16S rRNA markers and is validated on simulated, synthetic and genuine metagenomes. We show that MATAM outperforms other available methods in terms of low error rates and recovered fractions and is suitable to provide improved assemblies for precise taxonomic assignments.Lire moins >
Lire la suite >Motivation: Advances in the sequencing of uncultured environmental samples, dubbed metagenomics, raise a growing need for accurate taxonomic assignment. Accurate identification of organisms present within a community is essential to understanding even the most elementary ecosystems. However, current high-throughput sequencing technologies generate short reads which partially cover full-length marker genes and this poses difficult bioinformatic challenges for taxonomy identification at high resolution. Results: We designed MATAM, a software dedicated to the fast and accurate targeted assembly of short reads sequenced from a genomic marker of interest. The method implements a stepwise process based on construction and analysis of a read overlap graph. It is applied to the assembly of 16S rRNA markers and is validated on simulated, synthetic and genuine metagenomes. We show that MATAM outperforms other available methods in terms of low error rates and recovered fractions and is suitable to provide improved assemblies for precise taxonomic assignments.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01646297v2/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01646297v2/document
- Accès libre
- Accéder au document
- https://academic.oup.com/bioinformatics/article-pdf/34/4/585/25117252/btx644.pdf
- Accès libre
- Accéder au document
- https://academic.oup.com/bioinformatics/article-pdf/34/4/585/25117252/btx644.pdf
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01646297v2/document
- Accès libre
- Accéder au document
- https://academic.oup.com/bioinformatics/article-pdf/34/4/585/25117252/btx644.pdf
- Accès libre
- Accéder au document
- https://academic.oup.com/bioinformatics/article-pdf/34/4/585/25117252/btx644.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- btx644.pdf
- Accès libre
- Accéder au document
- btx644.pdf
- Accès libre
- Accéder au document