• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Differential Neural Network Identification ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Differential Neural Network Identification for Homogeneous Dynamical Systems ⋆
Author(s) :
Ballesteros, Mariana [Auteur]
Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV]
Polyakov, Andrey [Auteur] refId
Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur] refId
Finite-time control and estimation for distributed systems [VALSE]
Chairez, Isaac [Auteur]
Instituto Politechnico National [IPN]
Poznyak, Alexander [Auteur]
Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV]
Conference title :
NOLCOS 2019 - 11th IFAC Symposium on Nonlinear Control Systems
City :
Vienna
Country :
Autriche
Start date of the conference :
2019-09-04
English keyword(s) :
Differential Neural Network
Nonlinear Systems
Homogeneous systems
Identification
HAL domain(s) :
Informatique [cs]/Automatique
English abstract : [en]
In this paper, a non parametric identifier for homogeneous nonlinear systems affine in the input is proposed. The identification algorithm is based on the neural networks using sigmoidal activation functions. The learning ...
Show more >
In this paper, a non parametric identifier for homogeneous nonlinear systems affine in the input is proposed. The identification algorithm is based on the neural networks using sigmoidal activation functions. The learning algorithm is derived by means of Lyapunov function method and homogeneity theory. A numerical example demonstrates the performance of the proposed identifier.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-02278726/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-02278726/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-02278726/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017