• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On robust parameter estimation in finite-time ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1109/TAC.2019.2932960
Title :
On robust parameter estimation in finite-time without persistence of excitation
Author(s) :
Wang, Jian [Auteur]
Hangzhou Dianzi University [HDU]
Efimov, Denis [Auteur] refId
Finite-time control and estimation for distributed systems [VALSE]
Bobtsov, Alexey [Auteur]
National Research University of Information Technologies, Mechanics and Optics [St. Petersburg] [ITMO]
Journal title :
IEEE Transactions on Automatic Control
Pages :
1731-1738
Publisher :
Institute of Electrical and Electronics Engineers
Publication date :
2020-04-01
ISSN :
0018-9286
HAL domain(s) :
Sciences de l'ingénieur [physics]/Automatique / Robotique
English abstract : [en]
The problem of adaptive estimation of constant parameters in the linear regressor model is studied without the hypothesis that regressor is Persistently Excited (PE). First, the initial vector estimation problem is transformed ...
Show more >
The problem of adaptive estimation of constant parameters in the linear regressor model is studied without the hypothesis that regressor is Persistently Excited (PE). First, the initial vector estimation problem is transformed to a series of the scalar ones using the method of Dynamic Regressor Extension and Mixing (DREM). Second, several adaptive estimation algorithms are proposed for the scalar scenario. In such a case, if the regressor may be nullified asymptotically or in a finite time, then the problem of estimation is also posed on a finite interval of time. Robustness of the proposed algorithms with respect to measurement noise and exogenous disturbances is analyzed. The efficiency of the designed estimators is demonstrated in numeric experiments for academic examples.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-02196992/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-02196992/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01998043/file/FT_Adaptive_J.pdf
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-02196992/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01998043/file/FT_Adaptive_J.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017