• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Approximating Pareto Set Topology by Cubic ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
DOI :
10.1007/978-3-030-12598-1_31
Title :
Approximating Pareto Set Topology by Cubic Interpolation on Bi-objective Problems
Author(s) :
Marca, Yuri [Auteur]
Shinshu University [Nagano]
Aguirre, Hernan [Auteur]
Faculty of Engineering [Nagano]
Martinez, Saúl Zapotecas [Auteur]
Faculty of Engineering [Nagano]
Liefooghe, Arnaud [Auteur] refId
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Optimisation de grande taille et calcul large échelle [BONUS]
Derbel, Bilel [Auteur] refId
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Optimisation de grande taille et calcul large échelle [BONUS]
Verel, Sébastien [Auteur]
Laboratoire d'Informatique Signal et Image de la Côte d'Opale [LISIC]
Tanaka, Kiyoshi [Auteur]
Faculty of Engineering [Nagano]
Scientific editor(s) :
Kalyanmoy Deb
Erik Goodman
Carlos A. Coello Coello
Kathrin Klamroth
Kaisa Miettinen
Sanaz Mostaghim
Patrick Reed
Conference title :
EMO 2019 - International Conference on Evolutionary Multi-Criterion Optimization
City :
East Lansing, Michigan
Country :
Etats-Unis d'Amérique
Start date of the conference :
2019-03-10
Book title :
Evolutionary Multi-Criterion Optimization: 10th International Conference, EMO 2019, East Lansing, MI, USA, March 10-13, 2019, Proceedings
Journal title :
Lecture Notes in Computer Science (LNCS)
Publication date :
2019-02-03
English keyword(s) :
Difficult Pareto set topology
Multi-objective optimization
Interpolation
Evolutionary algorithm
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
English abstract : [en]
Difficult Pareto set topology refers to multi-objective problems with geometries of the Pareto set such that neighboring optimal solutions in objective space differ in several or all variables in decision space. These ...
Show more >
Difficult Pareto set topology refers to multi-objective problems with geometries of the Pareto set such that neighboring optimal solutions in objective space differ in several or all variables in decision space. These problems can present a tough challenge for evolutionary multi-objective algorithms to find a good approximation of the optimal Pareto set well-distributed in decision and objective space. One important challenge optimizing these problems is to keep or restore diversity in decision space. In this work, we propose a method that learns a model of the topology of the solutions in the population by performing parametric spline interpolations for all variables in decision space. We use Catmull-Rom parametric curves as they allow us to deal with any dimension in decision space. The proposed method is appropriated for bi-objective problems since their optimal set is a one-dimensional curve according to the Karush-Kuhn-Tucker condition. Here, the proposed method is used to promote restarts from solutions generated by the model. We study the effectiveness of the proposed method coupled to NSGA-II and two variations of MOEA/D on problems with difficult Pareto set topology. These algorithms approach very differently the Pareto set. We argue and discuss their behavior and its implications for model building.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-02064548/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-02064548/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-02064548/document
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • emo2019_yuri.pdf
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • emo2019_yuri.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017