Approximating Pareto Set Topology by Cubic ...
Type de document :
Communication dans un congrès avec actes
Titre :
Approximating Pareto Set Topology by Cubic Interpolation on Bi-objective Problems
Auteur(s) :
Marca, Yuri [Auteur]
Shinshu University [Nagano]
Aguirre, Hernan [Auteur]
Faculty of Engineering [Nagano]
Martinez, Saúl Zapotecas [Auteur]
Faculty of Engineering [Nagano]
Liefooghe, Arnaud [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Derbel, Bilel [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Verel, Sébastien [Auteur]
Laboratoire d'Informatique Signal et Image de la Côte d'Opale [LISIC]
Tanaka, Kiyoshi [Auteur]
Faculty of Engineering [Nagano]
Shinshu University [Nagano]
Aguirre, Hernan [Auteur]
Faculty of Engineering [Nagano]
Martinez, Saúl Zapotecas [Auteur]
Faculty of Engineering [Nagano]
Liefooghe, Arnaud [Auteur]

Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Derbel, Bilel [Auteur]

Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Verel, Sébastien [Auteur]
Laboratoire d'Informatique Signal et Image de la Côte d'Opale [LISIC]
Tanaka, Kiyoshi [Auteur]
Faculty of Engineering [Nagano]
Titre de la manifestation scientifique :
EMO 2019 - International Conference on Evolutionary Multi-Criterion Optimization
Ville :
East Lansing, Michigan
Pays :
Etats-Unis d'Amérique
Date de début de la manifestation scientifique :
2019-03-10
Titre de l’ouvrage :
Evolutionary Multi-Criterion Optimization: 10th International Conference, EMO 2019, East Lansing, MI, USA, March 10-13, 2019, Proceedings
Date de publication :
2019-02-03
Mot(s)-clé(s) en anglais :
Difficult Pareto set topology
Multi-objective optimization
Interpolation
Evolutionary algorithm
Multi-objective optimization
Interpolation
Evolutionary algorithm
Discipline(s) HAL :
Informatique [cs]/Intelligence artificielle [cs.AI]
Résumé en anglais : [en]
Difficult Pareto set topology refers to multi-objective problems with geometries of the Pareto set such that neighboring optimal solutions in objective space differ in several or all variables in decision space. These ...
Lire la suite >Difficult Pareto set topology refers to multi-objective problems with geometries of the Pareto set such that neighboring optimal solutions in objective space differ in several or all variables in decision space. These problems can present a tough challenge for evolutionary multi-objective algorithms to find a good approximation of the optimal Pareto set well-distributed in decision and objective space. One important challenge optimizing these problems is to keep or restore diversity in decision space. In this work, we propose a method that learns a model of the topology of the solutions in the population by performing parametric spline interpolations for all variables in decision space. We use Catmull-Rom parametric curves as they allow us to deal with any dimension in decision space. The proposed method is appropriated for bi-objective problems since their optimal set is a one-dimensional curve according to the Karush-Kuhn-Tucker condition. Here, the proposed method is used to promote restarts from solutions generated by the model. We study the effectiveness of the proposed method coupled to NSGA-II and two variations of MOEA/D on problems with difficult Pareto set topology. These algorithms approach very differently the Pareto set. We argue and discuss their behavior and its implications for model building.Lire moins >
Lire la suite >Difficult Pareto set topology refers to multi-objective problems with geometries of the Pareto set such that neighboring optimal solutions in objective space differ in several or all variables in decision space. These problems can present a tough challenge for evolutionary multi-objective algorithms to find a good approximation of the optimal Pareto set well-distributed in decision and objective space. One important challenge optimizing these problems is to keep or restore diversity in decision space. In this work, we propose a method that learns a model of the topology of the solutions in the population by performing parametric spline interpolations for all variables in decision space. We use Catmull-Rom parametric curves as they allow us to deal with any dimension in decision space. The proposed method is appropriated for bi-objective problems since their optimal set is a one-dimensional curve according to the Karush-Kuhn-Tucker condition. Here, the proposed method is used to promote restarts from solutions generated by the model. We study the effectiveness of the proposed method coupled to NSGA-II and two variations of MOEA/D on problems with difficult Pareto set topology. These algorithms approach very differently the Pareto set. We argue and discuss their behavior and its implications for model building.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-02064548/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02064548/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02064548/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- emo2019_yuri.pdf
- Accès libre
- Accéder au document