• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient global optimization of constrained ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Pré-publication ou Document de travail
Title :
Efficient global optimization of constrained mixed variable problems
Author(s) :
Pelamatti, Julien [Auteur]
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
Brevault, Loïc [Auteur]
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
Balesdent, Mathieu [Auteur]
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
Talbi, El-Ghazali [Auteur] refId
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Optimisation de grande taille et calcul large échelle [BONUS]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Guerin, Yannick [Auteur]
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Recherche opérationnelle [cs.RO]
English abstract : [en]
Due to the increasing demand for high performance and cost reduction within the framework of complex system design, numerical optimization of computationally costly problems is an increasingly popular topic in most engineering ...
Show more >
Due to the increasing demand for high performance and cost reduction within the framework of complex system design, numerical optimization of computationally costly problems is an increasingly popular topic in most engineering fields. In this paper, several variants of the Efficient Global Optimization algorithm for costly constrained problems depending simultaneously on continuous decision variables as well as on quantitative and/or qualitative discrete design parameters are proposed. The adaptation that is considered is based on a redefinition of the Gaussian Process kernel as a product between the standard continuous kernel and a second kernel representing the covariance between the discrete variable values. Several parameterizations of this discrete kernel, with their respective strengths and weaknesses, are discussed in this paper. The novel algorithms are tested on a number of analytical test-cases and an aerospace related design problem, and it is shown that they require fewer function evaluations in order to converge towards the neighborhoods of the problem optima when compared to more commonly used optimization algorithms.Show less >
Language :
Anglais
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • http://arxiv.org/pdf/1806.03975
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017