Incremental delay enumeration: Space and time
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Incremental delay enumeration: Space and time
Author(s) :
Capelli, Florent [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Linking Dynamic Data [LINKS]
Strozecki, Yann [Auteur]
Données et algorithmes pour une ville intelligente et durable - DAVID [DAVID]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Linking Dynamic Data [LINKS]
Strozecki, Yann [Auteur]
Données et algorithmes pour une ville intelligente et durable - DAVID [DAVID]
Journal title :
Discrete Applied Mathematics
Publisher :
Elsevier
Publication date :
2018-08
ISSN :
0166-218X
English keyword(s) :
Enumeration
Incremental time
Polynomial delay
Structural complexity
Exponential time hypothesis
Incremental time
Polynomial delay
Structural complexity
Exponential time hypothesis
HAL domain(s) :
Informatique [cs]
Informatique [cs]/Complexité [cs.CC]
Informatique [cs]/Complexité [cs.CC]
English abstract : [en]
We investigate the relationship between several enumeration complexity classes andfocus in particular on problems having enumeration algorithms with incremental andpolynomial delay ( IncP andDelayP respectively). We show ...
Show more >We investigate the relationship between several enumeration complexity classes andfocus in particular on problems having enumeration algorithms with incremental andpolynomial delay ( IncP andDelayP respectively). We show that, for some algorithms, wecan turn an average delay into a worst case delay without increasing the space complexity,suggesting that IncP1 = DelayP even with polynomially bounded space. We use theExponential Time Hypothesis to exhibit a strict hierarchy inside IncP which gives the firstseparation of DelayP andIncP. Finally we relate the uniform generation of solutions toprobabilistic enumeration algorithms with polynomial delay and polynomial space.Show less >
Show more >We investigate the relationship between several enumeration complexity classes andfocus in particular on problems having enumeration algorithms with incremental andpolynomial delay ( IncP andDelayP respectively). We show that, for some algorithms, wecan turn an average delay into a worst case delay without increasing the space complexity,suggesting that IncP1 = DelayP even with polynomially bounded space. We use theExponential Time Hypothesis to exhibit a strict hierarchy inside IncP which gives the firstseparation of DelayP andIncP. Finally we relate the uniform generation of solutions toprobabilistic enumeration algorithms with polynomial delay and polynomial space.Show less >
Language :
Anglais
Popular science :
Non
ANR Project :
Collections :
Source :
Files
- http://arxiv.org/pdf/1703.01928
- Open access
- Access the document
- https://hal.inria.fr/hal-01923091/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01923091/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01923091/document
- Open access
- Access the document
- document
- Open access
- Access the document
- S0166218X18304001.pdf
- Open access
- Access the document
- 1703.01928
- Open access
- Access the document
- document
- Open access
- Access the document
- S0166218X18304001.pdf
- Open access
- Access the document