A Probabilistic Theory of Supervised ...
Type de document :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Titre :
A Probabilistic Theory of Supervised Similarity Learning for Pointwise ROC Curve Optimization
Auteur(s) :
Vogel, Robin [Auteur correspondant]
Signal, Statistique et Apprentissage [S2A]
Département Images, Données, Signal [IDS]
Bellet, Aurelien [Auteur]
Machine Learning in Information Networks [MAGNET]
Clémençon, Stéphan [Auteur]
Signal, Statistique et Apprentissage [S2A]
Département Images, Données, Signal [IDS]
Signal, Statistique et Apprentissage [S2A]
Département Images, Données, Signal [IDS]
Bellet, Aurelien [Auteur]
Machine Learning in Information Networks [MAGNET]
Clémençon, Stéphan [Auteur]
Signal, Statistique et Apprentissage [S2A]
Département Images, Données, Signal [IDS]
Titre de la manifestation scientifique :
Proceedings of the 35 th International Conference on Machine Learning
Ville :
Stochkolm
Pays :
Suède
Date de début de la manifestation scientifique :
2018-07-10
Date de publication :
2018-07-01
Discipline(s) HAL :
Informatique [cs]/Apprentissage [cs.LG]
Statistiques [stat]/Machine Learning [stat.ML]
Statistiques [stat]/Machine Learning [stat.ML]
Résumé en anglais : [en]
The performance of many machine learning techniques depends on the choice of an appropriate similarity or distance measure on the input space. Similarity learning (or metric learning) aims at building such a measure from ...
Lire la suite >The performance of many machine learning techniques depends on the choice of an appropriate similarity or distance measure on the input space. Similarity learning (or metric learning) aims at building such a measure from training data so that observations with the same (resp. different) label are as close (resp. far) as possible. In this paper, similarity learning is investigated from the perspective of pairwise bipartite ranking, where the goal is to rank the elements of a database by decreasing order of the probability that they share the same label with some query data point, based on the similarity scores. A natural performance criterion in this setting is pointwise ROC optimization: maximize the true positive rate under a fixed false positive rate. We study this novel perspective on similarity learning through a rigorous probabilistic framework. The empirical version of the problem gives rise to a constrained optimization formulation involving U-statistics, for which we derive universal learning rates as well as faster rates under a noise assumption on the data distribution. We also address the large-scale setting by analyzing the effect of sampling-based approximations. Our theoretical results are supported by illustrative numerical experiments.Lire moins >
Lire la suite >The performance of many machine learning techniques depends on the choice of an appropriate similarity or distance measure on the input space. Similarity learning (or metric learning) aims at building such a measure from training data so that observations with the same (resp. different) label are as close (resp. far) as possible. In this paper, similarity learning is investigated from the perspective of pairwise bipartite ranking, where the goal is to rank the elements of a database by decreasing order of the probability that they share the same label with some query data point, based on the similarity scores. A natural performance criterion in this setting is pointwise ROC optimization: maximize the true positive rate under a fixed false positive rate. We study this novel perspective on similarity learning through a rigorous probabilistic framework. The empirical version of the problem gives rise to a constrained optimization formulation involving U-statistics, for which we derive universal learning rates as well as faster rates under a noise assumption on the data distribution. We also address the large-scale setting by analyzing the effect of sampling-based approximations. Our theoretical results are supported by illustrative numerical experiments.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01922988/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01922988/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01922988/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- icml18_supp.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- icml18_supp.pdf
- Accès libre
- Accéder au document