• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Probabilistic Theory of Supervised ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
A Probabilistic Theory of Supervised Similarity Learning for Pointwise ROC Curve Optimization
Author(s) :
Vogel, Robin [Auteur]
Laboratoire Traitement et Communication de l'Information [LTCI]
Bellet, Aurelien [Auteur] refId
Machine Learning in Information Networks [MAGNET]
Clémençon, Stéphan [Auteur]
Laboratoire Traitement et Communication de l'Information [LTCI]
Conference title :
International Conference on Machine Learning (ICML 2018)
City :
Stockholm
Country :
Suède
Start date of the conference :
2018
HAL domain(s) :
Informatique [cs]/Apprentissage [cs.LG]
Statistiques [stat]/Machine Learning [stat.ML]
English abstract : [en]
The performance of many machine learning techniques depends on the choice of an appropriate similarity or distance measure on the input space. Similarity learning (or metric learning) aims at building such a measure from ...
Show more >
The performance of many machine learning techniques depends on the choice of an appropriate similarity or distance measure on the input space. Similarity learning (or metric learning) aims at building such a measure from training data so that observations with the same (resp. different) label are as close (resp. far) as possible. In this paper, similarity learning is investigated from the perspective of pairwise bipartite ranking, where the goal is to rank the elements of a database by decreasing order of the probability that they share the same label with some query data point, based on the similarity scores. A natural performance criterion in this setting is pointwise ROC optimization: maximize the true positive rate under a fixed false positive rate. We study this novel perspective on similarity learning through a rigorous probabilistic framework. The empirical version of the problem gives rise to a constrained optimization formulation involving U-statistics, for which we derive universal learning rates as well as faster rates under a noise assumption on the data distribution. We also address the large-scale setting by analyzing the effect of sampling-based approximations. Our theoretical results are supported by illustrative numerical experiments.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01922988/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01922988/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01922988/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017