• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parallel Pareto local search revisited – ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
DOI :
10.1145/3205455.3205577
Title :
Parallel Pareto local search revisited – First experimental results on bi-objective UBQP
Author(s) :
Shi, Jialong [Auteur]
Xi'an Jiaotong University [Xjtu]
Zhang, Qingfu [Auteur]
City University of Hong Kong [Hong Kong] [CUHK]
Derbel, Bilel [Auteur] refId
Optimisation de grande taille et calcul large échelle [BONUS]
Liefooghe, Arnaud [Auteur] refId
Optimisation de grande taille et calcul large échelle [BONUS]
Sun, Jianyong [Auteur]
Xi'an Jiaotong University [Xjtu]
Conference title :
GECCO '18: Proceedings of the Genetic and Evolutionary Computation Conference
City :
Kyoto
Country :
Japon
Start date of the conference :
2018-07-15
Book title :
GECCO '18: Proceedings of the Genetic and Evolutionary Computation Conference
Publisher :
ACM Press
Publication date :
2018
English keyword(s) :
Combinatorial Optimization
Pareto Local Search
Parallel Computation
HAL domain(s) :
Informatique [cs]/Recherche opérationnelle [cs.RO]
Mathématiques [math]/Optimisation et contrôle [math.OC]
English abstract : [en]
Pareto Local Search (PLS) is a simple, yet effective optimization approach dedicated to multi-objective combinatorial optimization. It can however suffer from a high computational cost, especially when the size of the ...
Show more >
Pareto Local Search (PLS) is a simple, yet effective optimization approach dedicated to multi-objective combinatorial optimization. It can however suffer from a high computational cost, especially when the size of the Pareto optimal set is relatively large. Recently, incorporating decomposition in PLS had revealed a high potential, not only in providing high-quality approximation sets, but also in speeding-up the search process. Using the bi-objective Unconstrained Binary Quadratic Programming (bUBQP) problem as an illustrative benchmark, we demonstrate some shortcomings in the resulting decomposition-guided Parallel Pareto Local Search (PPLS), and we propose to revisit the PPLS design accordingly. For instances with a priori unknown Pareto front shape, we show that a simple pre-processing technique to estimate the scale of the Pareto front can help PPLS to better balance the workload. Furthermore, we propose a simple technique to deal with the critically-important scalability issue raised by PPLS when deployed over a large number of computing nodes. Our investigations show that the revisited version of PPLS provides a consistent performance, suggesting that decomposition-guided PPLS can be further generalized in order to improve both parallel efficiency and approximation quality.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01920339/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01920339/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017