• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient Global Optimization using Deep ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Efficient Global Optimization using Deep Gaussian Processes
Author(s) :
Hebbal, Ali [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Brevault, Loïc [Auteur]
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
Balesdent, Mathieu [Auteur]
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
Talbi, El-Ghazali [Auteur] refId
Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Melab, Nouredine [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Conference title :
CEC 2018 - Congress on Evolutionary Computation
City :
Rio de Janeiro
Country :
Brésil
Start date of the conference :
2018-07-08
English keyword(s) :
Efficient Global Optimization
Non-stationary Kriging
Deep Gaussian Processes
HAL domain(s) :
Statistiques [stat]/Machine Learning [stat.ML]
Informatique [cs]/Modélisation et simulation
English abstract : [en]
Efficient Global Optimization (EGO) is widely used for the optimization of computationally expensive black-box functions. It uses a surrogate modeling technique based on Gaussian Processes (Kriging). However, due to the ...
Show more >
Efficient Global Optimization (EGO) is widely used for the optimization of computationally expensive black-box functions. It uses a surrogate modeling technique based on Gaussian Processes (Kriging). However, due to the use of a stationary covariance, Kriging is not well suited for approximating non stationary functions. This paper explores the integration of Deep Gaussian processes (DGP) in EGO framework to deal with the non-stationary issues and investigates the induced challenges and opportunities. Numerical experimentations are performed on analytical problems to highlight the different aspects of DGP and EGO.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01919795/file/conference_071817.pdf
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01919795/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01919795/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017