Consistent Discretization of Finite-time ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Consistent Discretization of Finite-time and Fixed-time Stable Systems
Author(s) :
Polyakov, Andrey [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Brogliato, Bernard [Auteur]
Modélisation, simulation et commande des systèmes dynamiques non lisses [TRIPOP]
Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Brogliato, Bernard [Auteur]
Modélisation, simulation et commande des systèmes dynamiques non lisses [TRIPOP]
Journal title :
SIAM Journal on Control and Optimization
Pages :
78-103
Publisher :
Society for Industrial and Applied Mathematics
Publication date :
2019
ISSN :
0363-0129
HAL domain(s) :
Informatique [cs]/Automatique
English abstract : [en]
Algorithms of implicit discretization for generalized homogeneous systems having discontinuity only at the origin are developed. They are based on the transformation of the original system to an equivalent one which admits ...
Show more >Algorithms of implicit discretization for generalized homogeneous systems having discontinuity only at the origin are developed. They are based on the transformation of the original system to an equivalent one which admits an implicit or a semi-implicit discretization schemes preserving the stability properties of the continuous-time system. Namely, the discretized model remains finite-time stable (in the case of negative homogeneity degree), and practically fixed-time stable (in the case of positive homogeneity degree). The theoretical results are supported with numerical examples.Show less >
Show more >Algorithms of implicit discretization for generalized homogeneous systems having discontinuity only at the origin are developed. They are based on the transformation of the original system to an equivalent one which admits an implicit or a semi-implicit discretization schemes preserving the stability properties of the continuous-time system. Namely, the discretized model remains finite-time stable (in the case of negative homogeneity degree), and practically fixed-time stable (in the case of positive homogeneity degree). The theoretical results are supported with numerical examples.Show less >
Language :
Anglais
Popular science :
Non
ANR Project :
Collections :
Source :
Files
- https://hal.inria.fr/hal-01838712v2/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01838712v2/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01838712v2/document
- Open access
- Access the document
- document
- Open access
- Access the document
- main.pdf
- Open access
- Access the document
- main.pdf
- Open access
- Access the document