• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Archive-aware Scalarisation-based ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Archive-aware Scalarisation-based Multi-Objective Local Search For a Bi-objective Permutation Flowshop Problem
Author(s) :
Blot, Aymeric [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Operational Research, Knowledge And Data [ORKAD]
López-Ibáñez, Manuel [Auteur]
University of Manchester [Manchester]
Kessaci, Marie-Éléonore [Auteur] refId
Operational Research, Knowledge And Data [ORKAD]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Jourdan, Laetitia [Auteur] refId
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Operational Research, Knowledge And Data [ORKAD]
Conference title :
Parallel Problem Solving from Nature - PPSN XV
City :
Coimbra
Country :
Portugal
Start date of the conference :
2018-09-08
English keyword(s) :
Flowshop scheduling
Local search
Heuristics
Multi-objective optimisation
Combinatorial optimisation
HAL domain(s) :
Informatique [cs]/Recherche opérationnelle [cs.RO]
English abstract : [en]
Given the availability of high-performing local search (LS) for single-objective (SO) optimisation problems, one successful approach to tackle their multi-objective (MO) counterparts is scalarisation-based local search ...
Show more >
Given the availability of high-performing local search (LS) for single-objective (SO) optimisation problems, one successful approach to tackle their multi-objective (MO) counterparts is scalarisation-based local search (SBLS). SBLS strategies solve multiple scalarisations, i.e., aggregations of the multiple objectives into a single scalar value, with varying weights. They have been shown to work specially well as the initialisation phase of other types of multi-objective local search, such as Pareto local search (PLS). A major drawback of existing SBLS strategies is that the underlying SO optimiser is unaware of the MO nature of the problem and only returns a single solution, discarding any intermediate solutions that may be of interest. We propose here two new SBLS strategies (ChangeRestart and Change-Direction) that overcome this drawback by augmenting the underlying SO-LS method with an archive of nondominated solutions that is used to dynamically update the scalarisations. The new strategies produce better results on the bi-objective permutation flowshop problem than other five SBLS strategies from the literature, not only on their own but also when used as the initialisation phase of PLS.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01868414/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01868414/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01868414/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017