• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deterministic metaheuristic based on fractal ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
DOI :
10.1016/j.asoc.2017.07.042
Title :
Deterministic metaheuristic based on fractal decomposition for large-scale optimization
Author(s) :
Nakib, Amir [Auteur]
Laboratoire Images, Signaux et Systèmes Intelligents [LISSI]
Ouchraa, Salima [Auteur]
Laboratoire Images, Signaux et Systèmes Intelligents [LISSI]
Shvai, Nadiya [Auteur]
Laboratoire Images, Signaux et Systèmes Intelligents [LISSI]
Souquet, Léo [Auteur]
Data ScienceTech Institute [DSTI Labs]
Talbi, El-Ghazali [Auteur] refId
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Journal title :
Applied Soft Computing
Pages :
468-485
Publisher :
Elsevier
Publication date :
2017-12
ISSN :
1568-4946
English keyword(s) :
Metaheuristics
Geometric fractal decomposition
Local search continuous optimization
Large-scale optimization
HAL domain(s) :
Computer Science [cs]/Operations Research [math.OC]
English abstract : [en]
In this work a new method based on geometric fractal decomposition to solve large-scale continuous optimization problems is proposed. It consists of dividing the feasible search space into sub-regions with the same geometrical ...
Show more >
In this work a new method based on geometric fractal decomposition to solve large-scale continuous optimization problems is proposed. It consists of dividing the feasible search space into sub-regions with the same geometrical pattern. At each iteration, the most promising ones are selected and further decomposed. This approach tends to provide a dense set of samples and has interesting theoretical convergence properties. Under some assumptions, this approach covers all the search space only in case of small dimensionality problems. The aim of this work is to propose a new algorithm based on this approach with low complexity and which performs well in case of large-scale problems. To do so, a low complex method that profits from fractals properties is proposed. Then, a deterministic optimization procedure is proposed using a single solution-based metaheuristic which is exposed to illustrate the performance of this strategy. Obtained results on common test functions were compared to those of algorithms from the literature and proved the efficiency of the proposed algorithm.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017